
EDA Simulator Link™ 3
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

EDA Simulator Link™ Reference
© COPYRIGHT 2003–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Updated for Version 1.1 (Release 13SP1)
June 2004 Online only Updated for Version 1.1.1 (Release 14)
October 2004 Online only Updated for Version 1.2 (Release 14SP1)
December 2004 Online only Updated for Version 1.3 (Release 14SP1+)
March 2005 Online only Updated for Version 1.3.1 (Release 14SP2)
September 2005 Online only Updated for Version 1.4 (Release 14SP3)
March 2006 Online only Updated for Version 2.0 (Release 2006a)
September 2006 Online only Updated for Version 2.1 (Release 2006b)
March 2007 Online only Updated for Version 2.2 (Release 2007a)
September 2007 Online only Updated for Version 2.3 (Release 2007b)
March 2008 Online only Updated for Version 2.4 (Release 2008a)
October 2008 Online only Updated for Version 2.5 (Release 2008b)
March 2009 Online only Updated for Version 2.6 (Release 2009a)
September 2009 Online only Updated for Version 3.0 (Release 2009b)
March 2010 Online only Updated for Version 3.1 (Release 2010a)

Contents

Block Reference

1
HDL Cosimulation . 1-2

FPGA Implementations . 1-3

Virtual Platform Simulation . 1-4

Blocks — Alphabetical List

2

Function Reference

3
HDL Cosimulation . 3-2

FPGA Implementations . 3-4

Virtual Platform Simulation . 3-5

v

Functions — Alphabetical List

4

Index

vi Contents

1

Block Reference

HDL Cosimulation (p. 1-2) Describes the EDA Simulator Link™
Simulink blocks available for use
with HDL cosimulation

FPGA Implementations (p. 1-3) Describes the EDA Simulator
Link Simulink blocks available
for use with generating FPGA
implementations

Virtual Platform Simulation (p. 1-4) Describes the EDA Simulator Link
Simulink blocks available for use
with generating Virtual Platform
simulations

1 Block Reference

HDL Cosimulation

HDL Cosimulation Cosimulate hardware component by
communicating with HDL module
instance executing in HDL simulator

To VCD File Generate value change dump (VCD)
file

1-2

FPGA Implementations

FPGA Implementations
Currently, there are no EDA Simulator Link Simulink blocks available for
use with generating FPGA implementations.

1-3

1 Block Reference

Virtual Platform Simulation
Currently, there are no EDA Simulator Link Simulink blocks available for
use with generating Virtual Platform simulations.

1-4

2

Blocks — Alphabetical List

HDL Cosimulation

Purpose Cosimulate hardware component by communicating with HDL module
instance executing in HDL simulator

Library EDA Simulator Link

Description The HDL Cosimulation block cosimulates a hardware component by
applying input signals to and reading output signals from an HDL
model under simulation in the HDL simulator. You can use this block
to model a source or sink device by configuring the block with input
or output ports only.

The tabbed panes on the block’s dialog box let you configure:

• Block input and output ports that correspond to signals (including
internal signals) of an HDL module. You must specify a sample
time for each output port; you can also specify a data type for each
output port.

• Type of communication and communication settings used to exchange
data between simulators.

• The timing relationship between units of simulation time in Simulink
and the HDL simulator.

• Rising-edge or falling-edge clocks to apply to your model (Incisive and
ModelSim users only; Discovery users see launchDiscovery). You
can specify the period for each clock signal.

• Tcl commands to run before and after the simulation (Incisive and
ModelSim users only; Discovery users see launchDiscovery).

The HDL Cosimulation Block Panes

The Ports pane provides fields for mapping signals of your HDL design
to input and output ports in your block. The signals can be at any level
of the HDL design hierarchy.

The Timescales pane lets you choose an optimal timing relationship
between Simulink and the HDL simulator. You can configure either of
the following timing relationships:

2-2

HDL Cosimulation

• Relative timing relationship (Simulink seconds correspond to an HDL
simulator-defined tick interval)

• Absolute timing relationship (Simulink seconds correspond to an
absolute unit of HDL simulator time)

The Connection pane specifies the communications mode used
between Simulink and the HDL simulator. If you use TCP socket
communication, this pane provides fields for specifying a socket
port and for the host name of a remote computer running the HDL
simulator. The Connection pane also provides the option for bypassing
the cosimulation block during Simulink simulation.

The Clocks pane lets you create optional rising-edge and falling-edge
clocks that apply stimuli to your cosimulation model.

The Tcl pane provides a way of specifying tools command language
(Tcl) commands to be executed before and after the HDL simulator
simulates the HDL component of your Simulink model. You can use
the Pre-simulation commands field on this pane for simulation
initialization and startup operations, but you cannot use it to change
simulation state.

Note You must make sure that signals being used in cosimulation
have read/write access. This rule applies to all signals on the Ports,
Clocks, and Tcl panes.

Incisive and ModelSim users: Verify such access through the HDL
simulator—see product documentation for details.

Discovery users: A tab file is included in the simulation via the
required launchDiscovery property "AccFile".

2-3

HDL Cosimulation

Dialog
Box

The Block Parameters dialog box consists of the following tabbed panes
of configuration options:

• “Ports Pane” on page 2-4

• “Connection Pane” on page 2-11

• “Timescales Pane” on page 2-15

• “Clocks Pane” on page 2-19 (Incisive and ModelSim users only)

• “Tcl Pane” on page 2-22 (Incisive and ModelSim users only)

Ports Pane

Specify fields for mapping signals of your HDL design to input and
output ports in your block. Simulink deposits an input port signal on an
HDL simulator signal at the signal’s sample rate. Conversely, Simulink
reads an output port signal from a specified HDL simulator signal at
the specified sample rate.

In general, Simulink handles port sample periods as follows:

• If you connect an input port to a signal that has an explicit sample
period, based on forward propagation, Simulink applies that rate
to the port.

• If you connect an input port to a signal that does not have an explicit
sample period, Simulink assigns a sample period that is equal to
the least common multiple (LCM) of all identified input port sample
periods for the model.

• After Simulink sets the input port sample periods, it applies
user-specified output sample times to all output ports. You must
specify an explicit sample time for each output port.

In addition to specifying output port sample times, you can force
the fixed-point data types on output ports. For example, setting the
Data Type property of an 8-bit output port to Signed and setting its
Fraction Length property to 5 would force the data type to sfix8_En5.

2-4

HDL Cosimulation

You can not force width; the width is always inherited from the HDL
simulator.

Note The Data Type and Fraction Length properties apply only to
the following signals:

• VHDL signals of any logic type, such asSTD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

You can set input/output ports in the Ports pane also. To do so, specify
port as both input and output (example shown for use with ModelSim).

2-5

HDL Cosimulation

If your model contains purely combinational paths, you can
select Enable direct feedthrough for HDL design with pure
combinational datapath to eliminate the one output-sample delay
that occurs with using EDA Simulator Link blocks and Simulink. For
more information on block simulation latency and using the direct
feedthrough feature to eliminate it, see “Eliminating Block Simulation
Latency”.

2-6

HDL Cosimulation

Discovery Users You may not enable direct feedthrough if your design
contains mixed HDL (VHDL and Verilog). If you do, EDA Simulator
Link will display an error in the HDL simulator.

The list at the center of the pane displays HDL signals corresponding
to ports on the HDL Cosimulation block. Maintain this list with the
buttons on the left of the pane:

• Auto Fill — Transmit a port information request to the HDL
simulator. The port information request returns port names and
information from an HDL model (or module) under simulation in the
HDL simulator and automatically enters this information into the
ports list. See “Obtaining Signal Information Automatically from the
HDL Simulator” for a detailed description of this feature.

• New— Add a new signal to the list and select it for editing.

• Delete — Remove a signal from the list.

• Up — Move the selected signal up one position in the list.

• Down—Move the selected signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply after
selecting parameter values.

Note When you import VHDL signals from the HDL simulator , EDA
Simulator Link returns the signal names in all capitals.

To edit a signal name, double-click on the name. Set the signal
properties on the same line and in the appropriate columns. The
properties of a signal are as follows.

2-7

HDL Cosimulation

Full HDL Name
Specifies the signal path name, using the HDL simulator path
name syntax. For example (for use with Incisive), a path name for
an input port might be manchester.samp. The signal can be at
any level of the HDL design hierarchy. The HDL Cosimulation
block port corresponding to the signal is labeled with the Full
HDL Name.

For rules on specifying signal/port and module path specifications
in Simulink, see “Specifying HDL Signal/Port and Module Paths
for Cosimulation”.

Copying Signal Path Names (For Incisive and ModelSim
Users) You can copy signal path names directly from the HDL
simulator wave window and paste them into the Full HDL
Name field, using the standard copy and paste commands in the
HDL simulator and Simulink. You must use the Path.Name view
and not Db::Path.Name view. After pasting a signal path name
into the Full HDL Name field, you must click the Apply button
to complete the paste operation and update the signal list.

I/O Mode
Select either Input, Output, or both ("both" applies to Incisive
and ModelSim users only).

Input designates signals of your HDL module that Simulink
will drive. Simulink deposits values on the specified the HDL
simulator signal at the signal’s sample rate.

2-8

HDL Cosimulation

Note When you define a block input port, make sure that only
one source is set up to drive input to that signal. For example, you
should avoid defining an input port that has multiple instances.
If multiple sources drive input to a single signal, your simulation
model may produce unexpected results.

Output designates signals of your HDL module that Simulink
will read. For output signals, you must specify an explicit sample
time. You can also specify any data type (except width). For
details on specifying a data type, see Date Type and Fraction
Length in a following section.

Because Simulink signals do not have the semantic of tri-states
(there is no ’Z’ value), you will gain no benefit by connecting to a
bidirectional HDL signal directly. To interface with bidirectional
signals, you can first interface to the input of the output driver,
then the enable of the output driver and the output of the input
driver. This approach leaves the actual tri-state buffer in HDL
where resolution functions can handle interfacing with other
tri-state buffers.

Sample Time
This property becomes available only when you specify an output
signal. You must specify an explicit sample time.

Sample Time represents the time interval between consecutive
samples applied to the output port. The default sample time is 1.
The exact interpretation of the output port sample time depends
on the settings of the Timescales pane of the HDL Cosimulation
block. See also “Understanding the Representation of Simulation
Time”.

Data Type
Fraction Length

These two related parameters apply only to output signals.

2-9

HDL Cosimulation

The Data Type property is enabled only for output signals. You
can direct Simulink to determine the data type, or you can assign
an explicit data type (with option fraction length). By explicitly
assigning a data type, you can force fixed-point data types on
output ports of an HDL Cosimulation block.

The Fraction Length property specifies the size, in bits, of
the fractional part of the signal in fixed-point representation.
Fraction Length becomes available if you do not set the Data
Type property to Inherit.

The data type specification for an output port depends on the
signal width and by the Data Type and Fraction Length
properties of the signal.

Note The Data Type and Fraction Length properties apply
only to the following signals:

• VHDL signals of any logic type, such as STD_LOGIC or
STD_LOGIC_VECTOR

• Verilog signals of wire or reg type

To assign a port data type, set the Data Type and Fraction
Length properties as follows:

• Select Inherit from the Data Type list if you want Simulink
to determine the data type.

This property defaults toInherit. When you select Inherit,
the Fraction Length edit field becomes unavailable.

Simulink always double checks that the word-length back
propagated by Simulink matches the word length queried from
the HDL simulator. If they do not match, Simulink generates
an error message. For example, if you connect a Signal

2-10

HDL Cosimulation

Specification block to an output, Simulink will force the data
type specified by Signal Specification block on the output port.

If Simulink cannot determine the data type of the signal
connected to the output port, it will query the HDL simulator
for the data type of the port. As an example, if the HDL
simulator returns the VHDL data type STD_LOGIC_VECTOR for a
signal of size N bits, the data type ufixN is forced on the output
port. (The implicit fraction length is 0.)

• Select Signed from the Data Type list if you want to explicitly
assign a signed fixed point data type. When you selectSigned,
the Fraction Length edit field becomes available. EDA
Simulator Link assigns the port a fixed-point type sfixN_EnF,
where N is the signal width and F is the Fraction Length.

For example, if you specify Data Type as Signed and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to sfix16_En5. For the same signal with a Data
Type set to Signed and Fraction Length of -5, Simulink
forces the data type to sfix16_E5.

• Select Unsigned from the Data Type list if you want to
explicitly assign an unsigned fixed point data type When you
selectUnsigned, the Fraction Length edit field becomes
available. EDA Simulator Link assigns the port a fixed-point
type ufixN_EnF, where N is the signal width and F is the
Fraction Length.

For example, if you specify Data Type as Unsigned and a
Fraction Length of 5 for a 16-bit signal, Simulink forces the
data type to ufix16_En5. For the same signal with a Data
Type set to Unsigned and Fraction Length of -5 , Simulink
forces the data type to ufix16_E5.

Connection Pane

This figure shows the default configuration of the Connection pane
(example shown is for use with Discovery). The block defaults to a

2-11

HDL Cosimulation

shared memory configuration for communication between Simulink and
the HDL simulator, when they run on a single computer.

If you select TCP/IP socket mode communication, the pane displays
additional properties, as shown in the following figure.

2-12

HDL Cosimulation

Connection Mode
If you want to bypass the HDL simulator when you run a Simulink
simulation, use these options to specify what type of simulation
connection you want. Select one of the following options:

• Full Simulation: Confirm interface and run HDL simulation
(default).

• Confirm Interface Only: Connect to the HDL simulator and
check for proper signal names, dimensions, and data types, but
do not run HDL simulation.

• No Connection: Do not communicate with the HDL simulator.
The HDL simulator does not need to be started.

With the second and third options, the EDA Simulator Link
cosimulation interface does not communicate with the HDL
simulator during Simulink simulation.

2-13

HDL Cosimulation

The HDL Simulator is running on this computer
Select this option if you want to run Simulink and the HDL
simulator on the same computer. When both applications run on
the same computer, you have the choice of using shared memory
or TCP sockets for the communication channel between the two
applications. If you do not select this option, only TCP/IP socket
mode is available, and the Connection method list becomes
unavailable.

Connection method
This list becomes available when you selectThe HDL Simulator
is running on this computer. Select Socket if you want
Simulink and the HDL simulator to communicate via a designated
TCP/IP socket. Select Shared memory if you want Simulink and
the HDL simulator to communicate via shared memory. For more
information on these connection methods, see “Communications
for HDL Cosimulation”.

Host name
If you run Simulink and the HDL simulator on different
computers, this text field becomes available. The field specifies
the host name of the computer that is running your HDL
simulation in the HDL simulator.

Port number or service
Indicate a valid TCP socket port number or service for your
computer system (if not using shared memory). For information
on choosing TCP socket ports, see “Choosing TCP/IP Socket Ports”.

Show connection info on icon
When you select this option, Simulink indicates information
about the selected communication method and (if applicable)
communication options information on the HDL Cosimulation
block icon. If you select shared memory, the icon displays the
string SharedMem. If you select TCP socket communication, the
icon displays the string Socket and displays the host name and
port number in the format hostname:port.

2-14

HDL Cosimulation

In a model that has multiple HDL Cosimulation blocks, with each
communicating to different instances of the HDL simulator in
different modes, this information helps to distinguish between
different cosimulation sessions.

Timescales Pane

The Timescales pane of the HDL Cosimulation block parameters
dialog box lets you choose a timing relationship between Simulink and
the HDL simulator, either manually or automatically. The following
figure shows the default settings of the Timescales pane (example
shown for use with Incisive).

The Timescales pane specifies a correspondence between one second of
Simulink time and some quantity of HDL simulator time. This quantity
of HDL simulator time can be expressed in one of the following ways:

2-15

HDL Cosimulation

• Using relative timing mode. EDA Simulator Link defaults to relative
timing mode.

• Using absolute timing mode

For more information on calculating relative and absolute timing modes,
see “Defining the Simulink and HDL Simulator Timing Relationship”.

For detailed information on the relationship between Simulink and the
HDL simulator during cosimulation, and on the operation of relative
and absolute timing modes, see “Understanding the Representation
of Simulation Time”.

The following sections describe how to specify the timing relationship,
either automatically or manually.

Automatically Specifying the Timing Relationship
You can have the EDA Simulator Link software calculate the timing
relationship for you by performing the following steps:

1 Verify that the HDL simulator is running. EDA Simulator Link
software can get the resolution limit of the HDL simulator only when
that simulator is running.

2 Click on Auto Timescale.

The following graphic shows the result of clicking Auto Timescale
in the Timescales pane of the HDL Cosimulation block in the
Manchester Receiver demo (example shown for use with ModelSim).

EDA Simulator Link software analyzes all the clock and port signal
rates from the HDL Cosimulation block when it calculates the scale
factor.

2-16

HDL Cosimulation

Note EDA Simulator Link cannot automatically calculate a sample
timescale based on any signals driven via Tcl commands or in the
HDL simulator. The link software cannot perform such calculations
because it cannot know the rates of these signals.

The link software returns the sample rate in either seconds or
ticks. If the results are in seconds, then the link software was able
to resolve the timing differences in favor of fidelity (absolute time).
If the results are in ticks, then the link software was best able to
resolve the timing differences in favor of efficiency (relative time).

Each time you press Auto Timescale, the EDA Simulator Link
software opens an informational GUI display that explains the
results of Auto Timescale. If the link software cannot calculate a
timescale for the given sample times, use the information in this
dialog box to adjust your sample times.

Click Show Details... for information specific to your model’s
signals. Click OK to exit the informational dialog box.

3 Click Apply to commit your changes.

2-17

HDL Cosimulation

Note EDA Simulator Link does not support Auto Timescale calculated
from frame-based signals.

For more on the timing relationship between the HDL simulator and
Simulink, see “Understanding the Representation of Simulation Time”.

Manually Specifying a Relative Timing Relationship
To manually configure relative timing mode for a cosimulation, perform
the following steps:

1 Select the Timescales tab of the HDL Cosimulation block
parameters dialog box.

2 Verify that Tick, the default setting, is selected. If it is not, then
select it from the list on the right.

3 Enter a scale factor in the text box on the left. The default scale
factor is 1. For example, the next figure, shows the Timescales pane
configured for a relative timing correspondence of 10 HDL simulator
ticks to 1 Simulink second.

4 Click Apply to commit your changes.

Manually Specifying an Absolute Timing Relationship
To manually configure absolute timing mode for a cosimulation, perform
the following steps:

1 Select the Timescales tab of the HDL Cosimulation block
parameters dialog box.

2 Select a unit of absolute time from the list on the right. The
units available include fs (femtoseconds), ps (picoseconds), ns
(nanoseconds), us (microseconds), ms (milliseconds), and s (seconds).

2-18

HDL Cosimulation

3 Enter a scale factor in the text box on the left. The default scale
factor is 1. For example, in the next figure, the Timescales pane is
configured for an absolute timing correspondence of 1 HDL simulator
second to 1 Simulink second.

4 Click Apply to commit your changes.

Clocks Pane

Discovery Users The Clocks pane is not available on the
HDL Cosimulation block for use with Synopsys Discovery. See
launchDiscovery for instructions on adding clocks to your cosimulation
model.

You can create optional rising-edge and falling-edge clocks that apply
stimuli to your cosimulation model. To do so, use the Clocks pane of the
HDL Cosimulation block (example shown for use with Incisive).

2-19

HDL Cosimulation

The scrolling list at the center of the pane displays HDL clocks that
drive values to the HDL signals that you are modeling, using the
deposit method.

Maintain the list of clock signals with the buttons on the left of the pane:

• New— Add a new clock signal to the list and select it for editing.

• Delete — Remove a clock signal from the list.

• Up— Move the selected clock signal up one position in the list.

• Down—Move the selected clock signal down one position in the list.

To commit edits to the Simulink model, you must also click Apply.

A clock signal has the following properties.

2-20

HDL Cosimulation

Full HDL Name
Specify each clock as a signal path name, using the HDL
simulator path name syntax. For example: /manchester/clk or
manchester.clk.

For information about and requirements for path specifications
in Simulink, see “Specifying HDL Signal/Port and Module Paths
for Cosimulation”.

Note You can copy signal path names directly from the HDL
simulator wave window and paste them into the Full HDL
Name field, using the standard copy and paste commands in the
HDL simulator and Simulink. You must use the Path.Name view
and not Db::Path.Name view. After pasting a signal path name
into the Full HDL Name field, you must click the Apply button
to complete the paste operation and update the signal list.

Edge
Select Rising or Falling to specify either a rising-edge clock or a
falling-edge clock.

Period
You must either specify the clock period explicitly or accept the
default period of 2.

If you specify an explicit clock period, you must enter a sample
time equal to or greater than 2 resolution units (ticks).

If the clock period (whether explicitly specified or defaulted) is not
an even integer, Simulink cannot create a 50% duty cycle. Instead,
the EDA Simulator Link software creates the falling edge at

clockperiod / 2

(rounded down to the nearest integer).

2-21

HDL Cosimulation

Note The Clocks pane does not support vectored signals. Signals
must be logic types with 1 and 0 values.

For instructions on adding and editing clock signals, see “Creating
Optional Clocks with the Clocks Pane of the HDL Cosimulation Block”.

Tcl Pane

Discovery Users The Tcl pane is not available on the HDL
Cosimulation block for use with Synopsys Discovery. See
launchDiscovery for instructions on issuing Tcl commands during a
cosimulation session.

Specify tools command language (Tcl) commands to be executed before
and after the HDL simulator simulates the HDL component of your
Simulink model (example shown for use with ModelSim).

2-22

HDL Cosimulation

Pre-simulation commands
Contains Tcl commands to be executed before the HDL simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

Use of this field can range from something as simple as a
one-line echo command to confirm that a simulation is running
to a complex script that performs an extensive simulation
initialization and startup sequence.

Post-simulation commands
Contains Tcl commands to be executed after the HDL simulator
simulates the HDL component of your Simulink model. You can
specify one Tcl command per line in the text box or enter multiple
commands per line by appending each command with a semicolon
(;), the standard Tcl concatenation operator.

2-23

HDL Cosimulation

Creating a Tcl Script as an Alternative to Using the Tcl Pane
You can create a Tcl script that lists the Tcl commands you want to
execute on the HDL simulator, either pre- or post-simulation.

Tcl Scripts for ModelSim Users

You can create a ModelSim DO file that lists Tcl commands and then
specify that file with the ModelSim do command as follows:

do mycosimstartup.do

Or

do mycosimcleanup.do

You can include the quit -f command in an after-simulation Tcl
command string or DO file to force ModelSim to shut down at the end
of a cosimulation session. To ensure that all other after-simulation
Tcl commands specified for the model will execute, specify all after
simulation Tcl commands in a single cosimulation block and place quit
at the end of the command string or DO file.

With the exception of quit, the command string or DO file that you
specify cannot include commands that load a ModelSim project or
modify simulator state. For example, they cannot include commands
such as start, stop, or restart.

Tcl Scripts for Incisive Users

You can create an HDL simulator Tcl script that lists Tcl commands
and then specify that file with the HDL simulator source command
as follows:

source mycosimstartup.script_extension

Or

source mycosimcleanup.script_extension

2-24

HDL Cosimulation

You can include the exit command in an after-simulation Tcl script
to force the HDL simulator to shut down at the end of a cosimulation
session. To ensure that all other after-simulation Tcl commands
specified for the model will execute, specify all after simulation Tcl
commands in a single cosimulation block and place exit at the end of
the command string or Tcl script.

With the exception of the exit command, the command string or Tcl
script that you specify cannot include commands that load an HDL
simulator project or modify simulator state. For example, neither can
include commands such as run, stop, or reset.

The following example shows a Tcl script when the -gui argument was
used with hdlsimmatlab or hdlsimulink:

after 1000 {ncsim -submit exit}

This next example is of a Tcl exit script to use when the -tcl argument
was used with hdlsimmatlab or hdlsimulink:

after 1000 {exit}

2-25

To VCD File

Purpose Generate value change dump (VCD) file

Library EDA Simulator Link

Description
The To VCD File block generates a VCD file that contains information
about changes to signals connected to the block’s input ports and names
the file with the specified file name. You can use VCD files during
design verification in the following ways:

• For comparing results of multiple simulation runs, using the same or
different simulator environments

• As input to post-simulation analysis tools

• For porting areas of an existing design to a new design

Using the Block Parameters dialog box, you can specify the following
parameters:

• The file name to be used for the generated file

• The number of block input ports that are to receive signal data

• The timescale to relate Simulink sample times with HDL simulator
ticks

VCD files can grow very large for larger designs or smaller designs with
longer simulation runs. However, the only limitation on the size of a
VCD file generated by the To VCD File block is the maximum number
of signals (and symbols) supported, which is 943 (830,584).

For a description of the VCD file format, see “VCD File Format” on
page 2-29.

2-26

To VCD File

Note The To VCD File block is integrated into the Simulink Signal &
Scope Manager. See the Simulink User’s Guide for more information on
using the Signal & Scope Manager.

Graphically Displaying VCD File Data

You can graphically display VCD file data or analyze the data with
postprocessing tools. For example, the ModelSim vcd2wlf tool converts
a VCD file to a WLF file that you can view in a ModelSim wave
window. Other examples of postprocessing include the extraction of
data pertaining to a particular section of a design hierarchy or data
generated during a specific time interval.

Dialog
Box

2-27

To VCD File

VCD file name
The file name to be used for the generated VCD file. If you specify
a file name only, Simulink places the file in your current MATLAB
folder. Specify a complete path name to place the generated file in
a different location. If you specify the same name for multiple To
VCD File blocks, Simulink automatically adds a numeric postfix
to identify each instance uniquely.

Note If you want the generated file to have a .vcd file type
extension, you must specify it explicitly.

Do not give the same file name to different VCD blocks. Doing
so results in invalid VCD files.

Number of input ports
The number of block input ports on which signal data is to be
collected. The block can handle up to 943 (830,584) signals, each
of which maps to a unique symbol in the VCD file.

In some cases, a single input port maps to multiple signals (and
symbols). This multiple mapping occurs when the input port
receives a multidimensional signal.

Because the VCD specification does not include multidimensional
signals, Simulink flattens them to a 1D vector in the file.

Timescale
Choose an optimal timing relationship between Simulink and
the HDL simulator.

The timescale options specify a correspondence between one
second of Simulink time and some quantity of HDL simulator
time. You can express this quantity of HDL simulator time in
one of the following ways:

2-28

To VCD File

• In relative terms (i.e., as some number of HDL simulator ticks).
In this case, the cosimulation operates in relative timing mode,
which is the timing mode default.

To use relative mode, select Tick from the pop-up list at the
label in the HDL simulator, and enter the desired number of
ticks in the edit box at 1 second in Simulink corresponds
to. The default value is 1 Tick.

• In absolute units (such as milliseconds or nanoseconds). In this
case, the cosimulation operates in absolute timing mode.

To use absolute mode, select the desired resolution unit from
the pop-up list at the label in the HDL simulator (available
units are fs, ps, ns, us, ms, s), and enter the desired number
of resolution units in the edit box at 1 second in Simulink
corresponds to. Then, set the value of the HDL simulator
tick by selecting 1, 10, or 100 from the pop-up list at 1 HDL
Tick is defined as and the resolution unit from the pop-up
list at defined as.

VCD File
Format

The format of generated VCD files adheres to IEEE Std 1364-2001. The
following table describes the format.

Generated VCD File Format

File Content Description

$date
23-Sep-2003 14:38:11
$end

Data and time the file
was generated.

$version EDA Simulator
Link version 1.0 $ end

Version of the VCD
block that generated
the file.

2-29

To VCD File

Generated VCD File Format (Continued)

File Content Description

$timescale 1 ns $ end
The time scale that
was used during the
simulation.

$scope module manchestermodel $end
The scope of the module
being dumped.

$var wire 1 ! Original Data [0] $end

$var wire 1 " Recovered Clock [0] $end

$var wire 1 # Recovered Data [0] $end

$var wire 1 $ Data Validity [0] $end

Variable definitions.
Each definition
associates a signal with
character identification
code (symbol).

The symbols are
derived from printable
characters in the ASCII
character set from ! to
~.

Variable definitions
also include the
variable type (wire)
and size in bits.

$upscope $end
Marks a change to the
next higher level in the
HDL design hierarchy.

$enddefinitions $end
Marks the end of the
header and definitions
section.

#0
Simulation start time.

2-30

To VCD File

Generated VCD File Format (Continued)

File Content Description

$dumpvars
0!
0"
0#
0$

$end

Lists the values of all
defined variables at
time equals 0.

#630
1!

The starting point of
logged value changes
from checks of variable
values made at each
simulation time
increment.

This entry indicates
that at 63 nanoseconds,
the value of signal
Original Data
changed from 0 to
1.

.

.

.
#1160
1#
1$

At 116 nanoseconds
the values of signals
Recovered Data
and Data Validity
changed from 0 to 1.

$dumpoff
x!
x"
x#
x$

Marks the end of the
file by dumping the
values of all variables
as the value x.

2-31

To VCD File

Generated VCD File Format (Continued)

File Content Description

$end

2-32

3

Function Reference

HDL Cosimulation (p. 3-2) Describes the EDA Simulator Link
MATLAB functions available for use
with HDL cosimulation

FPGA Implementations (p. 3-4) Describes the EDA Simulator
Link MATLAB functions available
for use with generating FPGA
implementations

Virtual Platform Simulation (p. 3-5) Describes the EDA Simulator Link
MATLAB functions available for use
with generating Virtual Platform
simulations

3 Function Reference

HDL Cosimulation
breakHdlSim Execute stop command in HDL

simulator from MATLAB

configuremodelsim Configure ModelSim for use with
EDA Simulator Link

dec2mvl Convert decimal integer to binary
string

hdldaemon Control MATLAB server that
supports interactions with HDL
simulator

hdlsimmatlab Load instantiated HDL design for
verification with Cadence Incisive
and MATLAB

hdlsimulink Load instantiated HDL design for
cosimulation with Cadence Incisive
and Simulink

launchDiscovery Launch Synopsys Discovery tools for
use with Simulink and MATLAB
using EDA Simulator Link software

matlabcp Associate MATLAB component
function with instantiated HDL
design

matlabtb Schedule MATLAB test bench
session for instantiated HDL module

matlabtbeval Call specified MATLAB function
once and immediately on behalf of
instantiated HDL module

mvl2dec Convert multivalued logic to decimal

nclaunch Start and configure Cadence Incisive
simulators for use with EDA
Simulator Link software

nomatlabtb End active MATLAB test bench and
MATLAB component sessions

3-2

HDL Cosimulation

notifyMatlabServer Send HDL simulator event and
process IDs to MATLAB server

pingHdlSim Block cosimulation until HDL
simulator is ready for simulation

tclHdlSim Execute Tcl command in Incisive or
ModelSim simulator

vsim Start and configure ModelSim for
use with EDA Simulator Link

vsimmatlab Load instantiated HDL module for
verification with ModelSim and
MATLAB

vsimulink Load instantiated HDL module for
cosimulation with ModelSim and
Simulink

waitForHdlClient Wait until specified event ID is
obtained or time-out occurs

3-3

3 Function Reference

FPGA Implementations
fpgamodelsetup Set Simulink model parameters for

FPGA workflow

makefpgaproject Generate Xilinx® ISE project and
FPGA hardware-in-the-loop

setupxilinxtools Configure MATLAB environment for
use with Xilinx FPGA workflow

3-4

Virtual Platform Simulation

Virtual Platform Simulation
Currently, there are no EDA Simulator Link MATLAB functions available for
use with generating Virtual Platform simulations.

3-5

3 Function Reference

3-6

4

Functions — Alphabetical
List

breakHdlSim

Purpose Execute stop command in HDL simulator from MATLAB

Syntax breakHdlSim()
breakHdlSim('portNumber')
breakHdlSim('portNumber','hostName')

Description breakHdlSim() executes a stop command on the HDL simulator on the
local host. Use this function to unblock the HDL simulator after the
HDL simulator has loaded the simulation but before Simulink starts
the simulation. If, after starting the simulation, you decide to add more
signals to the waveform window, use this function to unblock the HDL
simulator first. When you usebreakHdlSim, make sure that you specify
the proper connection information to the HDL simulator.

breakHdlSim('portNumber') executes a stop command on the HDL
simulator on port portNumber.

breakHdlSim('portNumber','hostName') executes a stop command
on the HDL simulator on host hostName.

Examples Stop the HDL simulator that is currently running on the local host.

>> breakHdlSim()

Stop the HDL simulator that is currently running on port 1234.

>> breakHdlSim('1234')

Stop the HDL simulator that is currently running on port 1234 and
host "mylinux".

>> breakHdlSim('1234', 'mylinux')

See Also pingHdlSim

4-2

configuremodelsim

Purpose Configure ModelSim for use with EDA Simulator Link

Syntax configuremodelsim
configuremodelsim('PropertyName', 'PropertyValue'...)

Description
Note configuremodelsim has been replaced by the guided setup
script (syscheckmq) for configuring your simulator setup. Although
configuremodelsim is supported for backward compatibility, you
should consider using the setup script instead. See “Diagnosing and
Customizing Your Setup for Use with the HDL Simulator and EDA
Simulator Link Software”.

configuremodelsim configures ModelSim for use with the MATLAB
and Simulink features of EDA Simulator Link. There are two uses
for this function:

• To configure ModelSim so that it may access EDA Simulator Link
when invoked from outside of MATLAB

• To add Tcl commands to the Tcl startup script that runs every time
you invoke ModelSim

When you use configuremodelsim without any arguments,
the function prompts you to either allow it to find the installed
ModelSim executable or have you provide the path to the ModelSim
installation you want to use. If you had not configured the software
previously (no Tcl DO file exists), configuremodelsim creates a
new ModelSimTclFunctionsForMATLAB.tcl script in the tcl folder
under the ModelSim installation. If a previous configuration exists,
configuremodelsim prompts you to decide if you want to replace the
existing configuration.

configuremodelsim('PropertyName', 'PropertyValue'...) starts
an interactive or programmatic script (depending on which property
name/value pairs you select) that allows you to customize the ModelSim

4-3

configuremodelsim

configuration. See configuremodelsim Property Name/Property Value
pairs.

After you call this function, ModelSim is ready to use EDA Simulator
Link when you invoke ModelSim from outside of MATLAB. You can
use the EDA Simulator Link functions for use in the HDL simulator
to perform the following actions:

• Load instances of VHDL entities or Verilog modules for simulations
that use MATLAB or Simulink for verification or cosimulation

• Begin MATLAB test bench or component sessions for loaded
instances

• End MATLAB test bench or component sessions

If you have specified Tcl commands to add to the Tcl
startup DO file, those commands are now added to the
ModelSimTclFunctionsForMATLAB.tcl script.

Note that configuremodelsim can only configure one platform. The
process hard-codes the path to the HDL server/client libraries, which
are specific to the OS (and GCC).

Usage Considerations

• configuremodelsim is intended to be used for setting up ModelSim
and MATLAB when you plan to start ModelSim from outside of
MATLAB.

If you intend to invoke vsim from the MATLAB prompt, then you do
not need to use configuremodelsim. (MATLAB will find vsim if
it already appears in the system path, and, if it does not, you can
set the vsimdir property value of vsim in MATLAB to provide the
path information.)

In addition, if you are starting ModelSim from outside of MATLAB,
you should define your environment with the path to the ModelSim
executable before running configuremodelsim.

4-4

configuremodelsim

Note The property name/property value options for vsim may have
been set previously with a call to configuremodelsim. To check on
current settings, search for and browse through the contents of the
file \tcl\ModelSimTclFunctionsForMATLAB.tcl in your ModelSim
installation path. The vsim function overrides any options previously
defined by the configuremodelsim function.

To start ModelSim from MATLAB with a default configuration
previously defined by configuremodelsim, issue the command !vsim
at the MATLAB command prompt.

• The vsimdir property value of configuremodelsim only instructs
configuremodelsim where to put the Tcl DO file. It does not set up
MATLAB workspace for MATLAB invocation of ModelSim (instead,
you can perform this setup with the vsimdir property value of vsim).

• If you are using configuremodelsim to add Tcl commands to the Tcl
startup DO file, to change the location of the Tcl startup DO file, or to
remove the Tcl startup DO file, you can run configuremodelsim as
many times as you wish. You need to run configuremodelsim only
once to set the location of the Tcl DO file.

Property
Name/Property
Value
Pairs

'action', 'install'
Instructs configuremodelsim to create a new
ModelSimTclFunctionsForMATLAB.tcl script.

This script is programmatic if you use 'vsimdir' to specify
the ModelSim installation you want to use; otherwise,
configuremodelsim prompts you for the desired folder.

If a previous configuration exists, configuremodelsim prompts
you to decide if you want to replace the existing configuration. If
you respond yes, the old Tcl DO file is overwritten with a new one.

4-5

configuremodelsim

'action', 'uninstall'
Removes the EDA Simulator Link configuration from the
ModelSim startup DO file. The property replaces the contents of
ModelSimTclFunctionsForMATLAB.tcl with this single line of
text: “# MATLAB and Simulink option was deconfigured.”

This script is programmatic if you use 'vsimdir' to specify
the ModelSim installation you want to use; otherwise,
configuremodelsim prompts you for the desired folder.

'tclstart', 'tcl_commands'
Adds one or more Tcl commands to the Tcl DO file that executes
during ModelSim startup. Specify a command string or a cell
array of command strings that configuremodelsim will append
to ModelSimTclFunctionsForMATLAB.tcl.

This script is programmatic only; if you do not also use 'vsimdir'
with this property, configuremodelsim uses the first vsim it
encounters on the system path and modifies the Tcl DO file
(ModelSimTclFunctionsForMATLAB.tcl) in the \tcl folder under
this ModelSim installation.

'vsimdir', 'pathname'
Specifies where to put the Tcl script containing EDA Simulator
Link Tcl commands. This script is programmatic only; if you do
not specify a folder with this property, configuremodelsim uses
the first vsim it encounters on the system path and installs the
Tcl DO file (ModelSimTclFunctionsForMATLAB.tcl) in the \tcl
folder under this ModelSim installation.

Examples The following function call starts the interactive installation script that
installs EDA Simulator Link commands for use with ModelSim:

configuremodelsim

Because the property name vsimdir was not supplied,
configuremodelsim prompts you for the folder:

4-6

configuremodelsim

Identify the ModelSim installation to be configured for MATLAB and Simulink

Do you want configuremodelsim to locate installed ModelSim executables [y]/n? n

Please enter the path to your ModelSim executable file (modelsim.exe or vsim.exe):

D:\Applications\Modeltech_6.0e\win32

Modelsim successfully configured to be used with MATLAB and Simulink

When configuremodelsim is run on an existing configuration, the
dialog looks similar to the following sample:

Identify the ModelSim installation to be configured for MATLAB and Simulink

Do you want configuremodelsim to locate installed ModelSim executables [y]/n? n

Please enter the path to your ModelSim executable file (modelsim.exe or vsim.exe):

D:\Applications\Modeltech_6.0e\win32

Previous MATLAB startup file found in this installation of ModelSim:

D:\Applications\Modeltech_6.0e\win32\..\tcl\ModelSimTclFunctionsForMATLAB.tcl

Do you want to replace this file [y]/n? y

Modelsim successfully configured to be used with MATLAB and Simulink

If you answer no to the prompt for replacing the file, you receive this
message instead:

Modelsim configuration not updated for MATLAB and Simulink

This next example shows adding a Tcl command to the ModelSim
configuration, for a customized Tcl DO file:

configuremodelsim('tclstart','echo Starting ModelSim and EDA Simulator Link')

vsimoptions =

echo Starting ModelSim and EDA Simulator Link

4-7

configuremodelsim

Modelsim successfully configured to be used with MATLAB and Simulink

If you now inspect ModelSimTclFunctionsForMATLAB.tcl you will find
this last Tcl command appended to the file.

The following example shows removing the EDA Simulator Link
configuration from ModelSim:

configuremodelsim ('action', 'uninstall')

Identify the Modelsim installtion to be deconfigured for MATLAB and Simulink

Do you want configuremodelsim to locate installed Modelsim executables [y]/n? n

Please enter the path to your Modelsim executable file (modelsim.exe or vsim.exe):

D:\Applications\Modeltech_6.0e\win32

Previous MATLAB startup file found in this installation of Modelsim:

D:\Applications\Modeltech_6.0e\win32...\tcl\ModelsimTclFunctionsForMATLAB.tcl

Do you want to replace this file (required for deconfiguration) [y]/n? y

Modelsim successfully deconfigured

If you now inspect ModelSimTclFunctionsForMATLAB.tcl you will find
that the contents of the file have been removed.

4-8

dec2mvl

Purpose Convert decimal integer to binary string

Syntax dec2mvl(d)
dec2mvl(d,n)

Description dec2mvl(d) returns the binary representation of d as a multivalued
logic string. d must be an integer smaller than 2^52.

dec2mvl(d,n) produces a binary representation with at least n bits.

Examples The following function call returns the string ’10111’:

dec2mvl(23)

The following function call returns the string ’01001’:

dec2mvl(-23)

The following function call returns the string ’11101001’:

dec2mvl(-23,8)

See Also mvl2dec

4-9

fpgamodelsetup

Purpose Set Simulink model parameters for FPGA workflow

Syntax fpgamodelsetup (Model)

Description fpgamodelsetup (Model) changes the parameters of the Simulink
model specified by the model argument to values that are commonly
used for HDL code generation and the Xilinx FPGA workflow. It also
causes the Simulink® HDL Coder™ pane and the EDA Simulator Link
pane to be visible in the Configuration Parameters dialog box.

The fpgamodelsetup command uses the Simulink set_param function
to set up models for HDL code generation and FPGA workflow
quickly and consistently. The model parameters settings provided by
fpgamodelsetup are intended as useful defaults, but they may not be
appropriate for all your applications.

Issue this function after you open or create a model but before you want
to generate the FPGA project. You must set the GUI up first with this
command or the EDA Link configuration panel will not be available
to you.

Inputs Model

Name of the model whose generated code is to be used in creating
the FPGA project, FPGA HIL, or in generating Tcl script

Examples >>model = 'sfir_fixed';
>>open_system(model);
>>fpgamodelsetup(model);

See Also makefpgaproject

4-10

hdldaemon

Purpose Control MATLAB server that supports interactions with HDL simulator

Syntax hdldaemon
s=hdldaemon
hdldaemon(’ParameterName’,ParameterValue)
s=hdldaemon(’ParameterName’,ParameterValue)
hdldaemon(’Option’)

Description hdldaemon starts the HDL Link MATLAB server using shared memory
interprocess communication. Only one hdldaemon per MATLAB session
can be running at any given time.

s=hdldaemon starts the MATLAB server using shared memory and
returns the server status connection in structure s.

hdldaemon(’ParameterName’,ParameterValue) starts the MATLAB
server using shared memory and accepts optional inputs as one or more
comma-separated parameter-value pairs. ParameterName is the name
of the parameter inside single quotes. ParameterValue is the value
corresponding to ParameterName. To start the server in socket mode,
use the 'socket' parameter.

Note If server is already running, issuing hdldaemon with these
arguments will shut down the current server and start the server up
again using shared memory (unless socket is specified). The exception
is issuing hdldaemon

s=hdldaemon(’ParameterName’,ParameterValue) works the same
as hdldaemon(’ParameterName’,ParameterValue) and returns the
server status connection in structure s.

hdldaemon(’Option’) accepts a single optional input. Only one
option may be specified in a single call. You must establish the server
connection before calling hdldaemon with one of these options.

4-11

hdldaemon

Inputs Option

Select one of the following options:

• 'kill'

Shuts down the MATLAB server without shutting down
MATLAB.

• 'stop'

Shuts down the MATLAB server without shutting down
MATLAB. There is no difference between using 'kill' and
'stop'.

• 'status'

Displays status of the MATLAB server. You can also use
s=hdldaemon('status'), which displays MATLAB server
status and returns status in structure s.

Parameter/Value Pairs

'time'

Specifies how the MATLAB server sends and returns time values.

• 'int64'

Specifies that the MATLAB server send and return time
values in the MATLAB function callbacks as 64-bit integers
representing the number of simulation steps.
See the matlabcp/matlabtb tnow parameter reference
(“Defining EDA Simulator Link MATLAB Functions and
Function Parameters”).

• 'sec'

Specifies that the MATLAB server sends and returns time
values in the MATLAB function callbacks as double values
that EDA Simulator Link scales to seconds based on the
current HDL simulation resolution.

4-12

hdldaemon

If server is already running, issuing hdldaemon with the time
parameter alone will shut down the current server and start the
server up again using shared memory.

Default: 'sec'

'quiet'

Suppresses printing diagnostic messages. Errors still appear. Use
this option to suppress the MATLAB server shutdown message
when using hdldaemon to get an unused socket number.

• 'true'

Suppress printing diagnostic messages.

• 'false'

Do not suppress printing diagnostic messages.

If server is already running, issuing hdldaemon with the quiet
parameter alone will shut down the current server and start the
server up again using shared memory.

Default: 'false'

'socket'

Defines the TCP/IP port used for communication. The socket
value can be:

• 0, indicating the host automatically chooses a valid TCP/IP port

• An explicit port number (1024 < port < 49151)

• A service name (that is, alias) from /etc/services file

If you specify the operating system option (0), use
hdldaemon('status') to acquire the assigned socket port
number.

4-13

hdldaemon

See “Specifying TCP/IP Values” for more information about
TCP/IP ports.

'tclcmd'

Transmits a Tcl command to all connected clients (ModelSim and
Incisive users only).

You may specify any valid Tcl command string. The Tcl command
string you specify cannot include commands that load an HDL
simulator project or modify simulator state. For example, the
string cannot include commands such as start, stop, or restart
(for ModelSim) or run, stop, or reset (for Incisive).

Note You can issue this command only after the software
establishes a server connection.

Caution

Do not call hdldaemon(tclcmd, 'tclcmd') from inside a
matlabtb or matlabcp function. Doing so results in a race
condition, and the simulator hangs.

Outputs s

s is a structure with these fields:

• comm

Shared memory or sockets

• connections

Number of open connections

• ipc_id

4-14

hdldaemon

File system name (for shared memory communication channel)
or TCP/IP port number (for socket)

Examples Start the MATLAB server using shared memory communication and
use an integer representation of time:

hdldaemon('time', 'int64')

Start MATLAB server and specify socket communication on port 4449:

hdldaemon('socket', 4449)

Start MATLAB server with socket communication and use a 64-bit
representation of time:

hdldaemon('socket', 4449, 'time', 'int64')

Check hdldaemon server status:

hdldaemon('status')

Returns, for example,

HDLDaemon socket server is running on port 4449 with 1 connections

Or

HDLDaemon shared memory server is running with 0 connections

Or

HDLDaemon is NOT running

4-15

hdldaemon

Check connection information for communication mode, number of
existing connections, and the interprocess communication identifier
(ipc_id) the MATLAB server is using for a link:

x=hdldaemon('status')

For a socket connection, returns:

x =
comm: 'sockets'

connections: 0
ipc_id: '4449'

For shared memory, returns:

x =

comm: 'shared memory'

connections: 0

ipc_id: [1x45 char]

You can examine ipc_id by entering it at the MATLAB command
prompt:

>>x.ipc_id

Shut down server without shutting down MATLAB:

hdldaemon('kill')

Issue simple Tcl commands:

hdldaemon('tclcmd','puts "This is a test"')

Issue complex Tcl commands:

4-16

hdldaemon

See the demo for Implementing the Filter Component of an Oscillator in
MATLAB for an extensive example of a compound Tcl command.

See Also launchDiscovery | nclaunch | vsim

How To • “Starting the HDL Simulator from MATLAB”

• “Run MATLAB Test Bench Simulation”

• “Stop Test Bench Simulation”

• “Run MATLAB Component Function Simulation”

4-17

hdlsimmatlab

Purpose Load instantiated HDL design for verification with Cadence Incisive
and MATLAB

Syntax hdlsimmatlab <instance> [<ncsim_args>]

Description The hdlsimmatlab command loads the specified instance of an HDL
design for verification and sets up the Cadence Incisive simulator so
it can establish a communication link with MATLAB. The Cadence
Incisive simulator opens a simulation workspace as it loads the HDL
design.

This command may be run from the HDL simulator prompt or from
a Tcl script shell (tclsh).

This command is issued in the HDL simulator.

Arguments <instance>
Specifies the instance of an HDL design to load for verification.

<ncsim_args>
Specifies one or more ncsim command arguments. For details,
see the description of ncsim in the Cadence Incisive simulator
documentation.

Examples The following command loads the module instance parse from library
work for verification and sets up the Cadence Incisive simulator so it
can establish a communication link with MATLAB:

tclshell> hdlsimmatlab work.parse

4-18

hdlsimulink

Purpose Load instantiated HDL design for cosimulation with Cadence Incisive
and Simulink

Syntax hdlsimulink [<ncsim_args>] <instance>
[-socket <tcp_spec>]

Description The hdlsimulink command loads the specified instance of an HDL
design for cosimulation and sets up the Cadence Incisive simulator so
it can establish a communication link with Simulink. The Cadence
Incisive simulator opens a simulation workspace into which it loads
the HDL design.

This command is issued in the HDL simulator.

Argument <ncsim_args>
Specifies one or more ncsim command arguments. At a minimum,
either -gui or -tcl is required. If you specify -gui, the Simulink
GUI launches when the HDL design is loaded. If you specify
-tcl, a Tcl script shell launches instead. If you do not specify
either of these arguments, the HDL simulator runs the simulation
without Simulink. Other valid ncsim arguments may be specified
in addition to -gui or -tcl. For more information on -gui, -tcl,
or other ncsim arguments, see the description of ncsim in the
Cadence Incisive simulator documentation.

<instance>
Specifies the instance of an HDL design to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the
Cadence Incisive simulator and MATLAB. This setting overrides
the setting specified with the MATLAB nclaunch function. The
<tcp_spec> can consist of a TCP/IP socket port number or service
name (alias). For example, you might specify port number 4449 or
the service name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports”.

4-19

hdlsimulink

If you run the HDL simulator and MATLAB on the same
computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket
<tcp-spec> on the command line.

Note The communication mode that you specify with the
hdlsimulink command must match what you specify for the
communication mode when you configure EDA Simulator Link
blocks in your Simulink model. For more information on modes
of communication, see “Communications for HDL Cosimulation”.
For more information on establishing the Simulink end of the
communication link, see “Configuring the Communication Link in
the HDL Cosimulation Block”.

Examples The following command loads the module instance parse from library
work for cosimulation, sets up the Cadence Incisive simulator so it can
establish a communication link with Simulink, and opens a Tcl script
shell:

tclshell> hdlsimulink -gui work.parse

4-20

launchDiscovery

Purpose Launch Synopsys Discovery tools for use with Simulink and MATLAB
using EDA Simulator Link software

Syntax pv = launchDiscovery('PropertyName', 'PropertyValue'...)
pv = launchDiscovery(PropertyValueStruct)

Description pv = launchDiscovery('PropertyName', 'PropertyValue'...)
generates HDL compile scripts and HDL simulator launch scripts and
executes them. These scripts set up an appropriate GCC environment
and load the correct EDA Simulator Link library into the ModelSim®

simulator. The function returns a structure of properties and their
values.

For custom scripting requirements, you can use launchDiscovery to
generate template "sh" scripts that you can modify and invoke from
MATLAB using a "system" command.

You must use a property name/property value pair with
launchDiscovery('PropertyName', 'PropertyValue'...).

pv = launchDiscovery(PropertyValueStruct) both passes and
returns a structure of properties and their values.

In batch run modes, the function returns only after the HDL simulator
starts and the HDL simulation begins. In interactive run modes,
the function returns without waiting for the user to start the HDL
simulation.

Property
Name/
Property
Value
Pairs

Required Properties

'LinkType' , 'appname'
Specifies either Simulink or MATLAB. A Simulink link session
includes using the HDL Cosimulation block in a Simulink model
for cosimulation with the HDL simulator. A MATLAB link session
includes using matlabtb, matlabcp, and matlabtbeval to employ
MATLAB functions as callbacks for HDL simulator events.

4-21

launchDiscovery

'VerilogFiles', 'pathname'
Specifies the full or relative (to "RunDir") path to Verilog files.
Specify as single string in double quotes or as cell array of
filenames.

Only one of "VerilogFiles" and "VhdlFiles" is required; specify
both for mixed language designs.

'VhdlFiles', 'pathname'
Specifies the full or relative (to "RunDir") path to VHDL files.
Specify as single string in double quotes or as cell array of
filenames.

Only one of "VerilogFiles" and "VhdlFiles" is required; specify
both for mixed language designs.

'TopLevel', 'modulename'
Specifies the name of the top-level HDL module.

'AccFile', 'filename'
Specifies the name of the signal access file that gives cosimulated
signals read/write/force access to the EDA Simulator Link
application. See the Synopsys Discovery documentation (search
for "PLI table") on how to create this file.

Common Optional Properties

'PreSimTcl', 'command'
Specifies Tcl commands to execute before starting the HDL
simulation. Use this property for simple waveform generation
statements for signals such as clocks, resets, and enables.

'PingTimeout', 'seconds'
For Simulink link sessions only. Specifies the number of seconds
to wait for the HDL simulator to launch before reporting back an
error. To avoid waiting for the simulator to start, use the value of
’0’. This property defaults to ’60’ for 'Batch' and 'Batch with
Xterm' run modes, and ’0’ for 'CLI' and 'GUI' run modes.

4-22

launchDiscovery

'RunDir', 'dirname'
Specifies the folder from which to execute the compilation and
launch scripts. This property defaults to an automatically created
temporary folder.

'RunMode', 'modetype'
Specifies how to start the HDL simulator. This property accepts
the following valid values:

• 'Batch': Start the HDL simulator in the background with no
window.

• 'Batch with Xterm': Start the HDL simulator in the
background but show session in an Xterm.

• 'CLI': Start the HDL simulator in an interactive shell.

• 'GUI': Start the HDL simulator in the Synopsys DVE GUI.

This value defaults to 'GUI'.

'RunTime', 'runtime'
Amount of time to run the simulation for when running in ’Batch’
or ’Batch with Xterm’ run modes. You can specify a raw number
(which uses the time resolution unit value) or a number with a
time unit (one of {’s’,’ms’,’us’,’ns’,’ps’,’fs’}). The default amount of
run time is: ’’

For MATLAB link sessions only.

'VlogAnFlags', 'flagnames'
Specifies 'vlogan' flags.

'VhdlAnFlags', 'flagnames'
Specifies 'vhdlan' flags.

'UumCompFlags', 'flagnames'
Sets UUM-compatible compilation flags to 'vcs' .

'UumRunFlags', 'flagnames'
Sets UUM-compatible runtime flags to 'simv' .

4-23

launchDiscovery

Advanced Optional Properties

'CosimBlockList', 'blocklist'
For Simulink links only. Specifies a cell array of HDL
Cosimulation block instances that are bound to the HDL
simulator about to be built and launched. This value defaults to
all cosimulation blocks in the current model. Correct syntax is:

'CosimBlockList', { 'block1', block2', ... }

'HostComm','commtype'
For Simulink link sessions only. Specifies the communications
mechanism between Simulink and a local HDL simulator. This
property accepts the following valid values:

• 'AutoGenSocketPort': Find an available TCP port on the
current host and program the CosimBlockList with that port.
This is the default value for HostComm.

• 'SharedPipe': Program the CosimBlockList to use a shared
pipe connection.

• 'GetFromCosimBlock': Use whichever communication
parameters appear in any existing cosimulation block masks.

• '<portnumber>': Program the CosimBlockList with a numeric
socket port value, '<portnumber>', specified as a string.

• '<servicename>': Program the CosimBlockList with an OS
TCP/IP service name, '<servicename>', specified as a string.

Note launchDiscovery currently does not directly support
remote host execution; see “Examples” on page 4-26 section for
help in setting up remote connections.

'HostName', 'name'
Specifies a remote host name for cross-machine co-simulations
with Simulink.

4-24

launchDiscovery

'SkipCompilation', true|false
When true, instructs the HDL simulator not to execute the
compilation script. This value defaults to false.

'SkipLaunch', true|false
When true, instructs the HDL simulator not to execute the launch
script. This value defaults to false.

'SkipScriptGeneration', true|false
When true, instructs HDL simulator not to write the compilation
and launch scripts. This value defaults to false.

'UserEnv,' 'arrayname'
Specifies a cell array of VAR=value environment variables for use
by the compilation and launch scripts. Correct syntax is:

'UserEnv', { 'VAR1=val1', 'VAR2=val2', ... }

VG_GNU_PACKAGE Properties

The default GCC compiler used is the default VG_GNU_PACKAGE
from a standard installation in the VCS tree. If you want to
compile using a different version of GCC, you must specify the
following properties.

'UseDefaultVgGnuPackage', true|false
Specifies using the default VG_GNU_PACKAGE in the VCS
installation tree. See Synopsys documentation for the installation
instructions. When you set the UseDefaultVgGnuPackage
property to True, the function ignoresVgGnuPackage and
VgGnuGccVersion. To guarantee inter-operability of the link
application with the ModelSim software, keep this property set to
True. This value defaults to True.

'VgGnuPackage', 'dirpath'
Specifies the full directory path to a nondefault installation (an
installation outside of the VCS tree) of VG_GNU_PACKAGE. This
value defaults to 'none'.

4-25

launchDiscovery

'VgGnuGccVersion', 'version'
Specifies the version of GCC to use. Currently, only gcc-4.2.2 is
supported.

The default value is ’gcc-4.2.2’.

Typical use cases for these properties include:

• Use default GCC version in the default VG_GNU_PACKAGE
installation location. You specify nothing. Synopsys and the
VG_GNU_PACKAGE distribution determine these defaults.

• Use default GCC version in a nondefault VG_GNU_PACKAGE
installation location. For this property, you must specify:

- 'UseDefaultVgGnuPackage', false

- 'VgGnuPackage', '/path/to/vg/gnu/installation'

• Use nondefault GCC version in the default VG_GNU_PACKAGE
installation location. For this property, you must specify:

- 'UseDefaultVgGnuPackage', false

- 'VgGnuGccVersion', 'gcc-4.4.2' (for example)

• Use nondefault GCC version in a nondefault VG_GNU_PACKAGE
installation location. For this property, you must specify:

- 'UseDefaultVgGnuPackage', false

- 'VgGnuPackage', '/path/to/vg/gnu/installation'

- 'VgGnuGccVersion', 'gcc-4.4.2' (for example)

Examples This example compiles and launches a single-file HDL design for
cosimulation with Simulink. The code allows the use of Verilog-2000
syntax in the HDL source. This code launches the Synopsys DVE
software.

>> launchDiscovery(...
'LinkType', 'Simulink', ...

4-26

launchDiscovery

'VerilogFiles', 'myinverter.v', ...
'VlogAnFlags', '+v2k', ...
'TopLevel', 'myinverter', ...
'AccFile', 'myinverter.acc' ...

);

This next example compiles and launches an HDL design in batch
mode. In batch mode, the HDL simulator exits after the simulation
completes, thus the example relaunches the simulation by calling
launchDiscovery again with the previously returned property/value
structure.

To run cosimulation after HDL simulator has exited:

>> pv = launchDiscovery(...

'LinkType', 'Simulink', ...

'VhdlFiles', '"mymultiplier.vhd mymultiplier_tb.vhd"', ...

'TopLevel', 'mymultiplier_tb', ...

'AccFile', 'mymultiplier.acc', ...

'RunMode', 'Batch', ...

);

To rerun cosimulation:

>> pv.SkipScriptGeneration = true;

>> pv.SkipCompilation = true;

>> pv = launchDiscovery(pv); % relaunch the simulator

This next example generates scripts for customizing the environment
of a specific project (USER_ENV includes some custom environment).
Some common reasons to customize the resultant script include:

• You want to run the scripts on a different platform.

• You want to run the scripts on the same platform but on a remote
machine.

• The build and run for the HDL simulator is part of a larger
environment involving Perl scripts, makefiles, or LSF.

4-27

launchDiscovery

• You want to run in 32-bit mode on a 64-bit machine

>> srcDir = '/path/to/src';

>> launchDiscovery(...

'LinkType', 'MATLAB', ...

'VhdlFiles', {[srcDir '/top.vhd'], [srcDir '/dut.vhd']}, ...

'TopLevel', 'top', ...

'AccFile', 'top.acc', ...

'RunDir', '/testruns/myrun', ...

'UserEnv', {'LM_LICENSE_FILE=/path/to/license.dat'}, ...

'SkipCompilation', true, ...

'SkipLaunch', true ...

);

On remote machine, for example, you might use:

sh> cd /testruns/myrun
sh> (edit scripts as needed)
sh> . tmwESLDS.compile.sh
sh> . tmwESLDS.launch.sh

After you finalize the scripts, you can execute them from MATLAB:

>> system('rsh linux100 cd /testruns/myrun ; sh tmwESLDS.compile.sh ;

sh tmwESLDS.launch.sh');

This example shows the generated compilation script:

4-28

launchDiscovery

AUTO-GENERATED SH SCRIPT FOR Simulink COSIMULATION

#--- EDA Link Environment ---

LAUNCHER_NAME=tmwESLDS

NUM_BITS=64

LINK_LIB_DIR=/matlab/toolbox/edalink/extensions/discovery/linux64

LINK_SL_FILE=liblfdhdls_vlog_gcc336.so

LINK_ML_FILE=liblfdhdlc_vlog_gcc336.so

BITS_FLAG=-full64

export VG_GNU_PACKAGE=${VCS_HOME}/gnu/linux

COMPILE_SETUP_CMDS=". ${VG_GNU_PACKAGE}/source_me_${NUM_BITS}.sh"

export LD_LIBRARY_PATH=${VG_GNU_PACKAGE}/gcc-${NUM_BITS}/slib64:${LINK_LIB_DIR}:${LD_LIBRARY_PATH}

LOAD_SL_LIB="-load ${LINK_SL_FILE}:simlinkserver"

LOAD_ML_LIB="-load ${LINK_ML_FILE}:matlabclient"

VHPI_SL_LIB="-vhpi ${LINK_SL_FILE}:simlinkserver"

VHPI_ML_LIB="-vhpi ${LINK_ML_FILE}:matlabclient"

export SL_LIB_SOCKET=37592

VLOG_FILES=/matlab/toolbox/edalink/extensions/discovery/discoverydemos/Filter/lowpass_filter.v

VHDL_FILES=

TOP_LEVEL=lowpass_filter

ACC_FILE=/matlab/toolbox/edalink/extensions/discovery/discoverydemos/Filter/lowpass_filter.pli_acc.tab

VHDLAN_FLAGS=

VLOGAN_FLAGS="+v2k"

UUMCOMP_FLAGS=

UUMRUN_FLAGS=

COMP_DEBUG_FLAGS=-debug_all

LAUNCH_DEBUG_FLAGS="-gui -i tmwESLDS.presim.tcl"

#--- User Environment ---

eval ${COMPILE_SETUP_CMDS}

vlogan ${BITS_FLAG} ${VLOGAN_FLAGS} ${VLOG_FILES}

vcs ${COMP_DEBUG_FLAGS} ${UUMCOMP_FLAGS} +vpi +applylearn+${ACC_FILE} ${BITS_FLAG} ${TOP_LEVEL} ${LOAD_ML_LIB}

4-29

launchDiscovery

This example shows the generated launch script:

AUTO-GENERATED SH SCRIPT FOR Simulink COSIMULATION

#--- EDA Link Environment ---

LAUNCHER_NAME=tmwESLDS

NUM_BITS=64

LINK_LIB_DIR=/matlab/toolbox/edalink/extensions/discovery/linux64

LINK_SL_FILE=liblfdhdls_vlog_gcc336.so

LINK_ML_FILE=liblfdhdlc_vlog_gcc336.so

BITS_FLAG=-full64

export VG_GNU_PACKAGE=${VCS_HOME}/gnu/linux

COMPILE_SETUP_CMDS=". ${VG_GNU_PACKAGE}/source_me_${NUM_BITS}.sh"

LAUNCH_SETUP_CMDS=". ${VG_GNU_PACKAGE}/source_me_${NUM_BITS}.sh"

export LD_LIBRARY_PATH=${VG_GNU_PACKAGE}/gcc-${NUM_BITS}/slib64:${LINK_LIB_DIR}:${LD_LIBRARY_PATH}

LOAD_SL_LIB="-load ${LINK_SL_FILE}:simlinkserver"

LOAD_ML_LIB="-load ${LINK_ML_FILE}:matlabclient"

VHPI_SL_LIB="-vhpi ${LINK_SL_FILE}:simlinkserver"

VHPI_ML_LIB="-vhpi ${LINK_ML_FILE}:matlabclient"

export SL_LIB_SOCKET=37592

VLOG_FILES=/matlab/toolbox/edalink/extensions/discovery/discoverydemos/Filter/lowpass_filter.v

VHDL_FILES=

TOP_LEVEL=lowpass_filter

ACC_FILE=/matlab/toolbox/edalink/extensions/discovery/discoverydemos/Filter/lowpass_filter.pli_acc.tab

VHDLAN_FLAGS=

VLOGAN_FLAGS="+v2k"

UUMCOMP_FLAGS=

UUMRUN_FLAGS=

COMP_DEBUG_FLAGS=-debug_all

LAUNCH_DEBUG_FLAGS="-gui -i tmwESLDS.presim.tcl"

#--- User Environment ---

eval ${LAUNCH_SETUP_CMDS}

simv ${LAUNCH_DEBUG_FLAGS} ${UUMRUN_FLAGS}

4-30

launchDiscovery

4-31

makefpgaproject

Purpose Generate Xilinx ISE project and FPGA hardware-in-the-loop

Syntax makefpgaproject(model/subsystem)
makefpgaproject(model/subsystem,'ParameterName',

ParameterValue)

Description makefpgaproject(model/subsystem) generates a Xilinx ISE project
workflow according to Simulink model parameter settings. model
specifies the name of the Simulink model, and subsystem specifies the
name of a subsystem at the top level of the Simulink model.

makefpgaproject(model/subsystem,'ParameterName',ParameterValue)
accepts one or more comma-separated parameter name/value pairs so
that you may specify optional build settings such as whether or not to
continue build on warnings and HDL Coder parameters. Specify
ParameterName inside single quotes.

Inputs model/subsystem

Name and path of the top-level subsystem whose generated code
is to be used in creating and updating the FPGA project, FPGA
HIL, and in generating Tcl script

Parameter Name/Value Pairs

ContinueOnWarning

When ContinueOnWarning is set to ’on’, makefpgaproject
continues to run when a warning is encountered, without pausing
for user action. For example, instead of asking if you want to
overwrite an existing ISE project, makefpgaproject overwrites
the project without asking and displays a warning message.

• 'on'

Continue build when it encounters a warning without
prompting user.

• 'off'

4-32

makefpgaproject

Prompt input from user when build encounters a warning.

Default: 'off'

HDLCoderParam

Specify HDL code generation options in a cell array of
property-value pairs.

• (HDLCoderParam, {HDLCParamName1, HDLCParamValue1,
HDLCParamName2, HDLCParamValue2, …})

See Simulink HDL Coder documentation for a list of valid
parameters and values for the makehdl command; you can use
those same property-value pairs with makefpgaproject.

For example:

{'TargetLanguage', 'VHDL', ...
'TargetDirectory', 'myhdlsrc'}

You may have to turn on the option "Always generate HDL" in
the EDA Link configuration parameters pane for the HDL code
generation options to take effect.

Examples Create FPGA project workflow with all defaults from the specified top
level subsystem.

> makefpgaproject('model/subsystem')

Create FPGA project workflow from specified top level subsystem and
do not prompt for action when warnings are encountered.

>makefpgaproject('model/subsystem', 'ContinueOnWarning', 'on')

4-33

makefpgaproject

Create FPGA project workflow from specified top level subsystem and
use the specified HDL Coder property value pairs when generating
HDL code.

>makefpgaproject('model/subsystem', 'HDLCoderParam', ...

{'TargetLanguage', 'VHDL', 'TargetDirectory', 'myhdlsrc'})

See Also fpgamodelsetup

4-34

matlabcp

Purpose Associate MATLAB component function with instantiated HDL design

Syntax matlabcp <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]
[-use_instance_obj]
[-argument]

Description The matlabcp command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

• Cancels any pending events scheduled by a previous matlabcp
command that specified the same instance. For example, if you issue
the command matlabcp for instance foo, all previously scheduled
events initiated by matlabcp on foo are canceled.

This command is issued in the HDL simulator.

MATLAB component functions simulate the behavior of modules in the
HDL model. A stub module (providing port definitions only) in the HDL
model passes its input signals to the MATLAB component function. The
MATLAB component processes this data and returns the results to the
outputs of the stub module. A MATLAB component typically provides
some functionality (such as a filter) that is not yet implemented in
the HDL code. See “Replacing an HDL Component with a MATLAB®

Component Function”.

4-35

matlabcp

Notes The communication mode that you specify for matlabcp must
match the communication mode you specified for hdldaemon when you
established the server connection.

For socket communications, specify the port number you selected for
hdldaemon when you issue a link request with the matlabcp command
in the HDL simulator.

Arguments <instance>
Specifies an instance of an HDL design that is associated with a
MATLAB function. By default, matlabcp associates the instance
to a MATLAB function that has the same name as the instance.
For example, if the instance is myfirfilter, matlabcp associates
the instance with the MATLAB function myfirfilter (note that
hierarchy names are ignored; for example, if your instance name
is top.myfirfilter, matlabcp would associate only myfirfilter
with the MATLAB function). Alternatively, you can specify a
different MATLAB function with -mfunc.

Note Do not specify an instance of an HDL module that has
already been associated with a MATLAB function (via matlabcp
or matlabtb). If you do, the new association overwrites the
existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

4-36

matlabcp

<timen>,... Specifies one or more discrete time values at which the
HDL simulator calls the specified MATLAB function. Each
time value is relative to the current simulation time. Even
if you do not specify a time, the HDL simulator calls the
MATLAB function once at the start of the simulation.
Separate multiple time values by a space.For example:

matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

The MATLAB function executes when time equals 0 and
then 10 nanoseconds, 10 milliseconds, and 10 seconds from
time zero.

Note For time-based parameters, you can specify any
standard time units (ns, us, and so on). If you do not specify
units, the command treats the time value as a value of
HDL simulation ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB
function repeatedly based on the specified <timen>,...
pattern. The time values are relative to the value of tnow
at the time the HDL simulator first calls the MATLAB
function.

-cancel <time> Specifies a time at which the specified MATLAB function
stops executing. The time value is relative to the value of
tnow at the time the HDL simulator first calls the MATLAB
function. If you do not specify a cancel time, the application
calls the MATLAB function until you finish the simulation,
quit the session, or issue a nomatlabtb call.

Note The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling
arguments for matlabcp.

4-37

matlabcp

Note Place time specifications after the matlabcp instance and
before any additional command arguments; otherwise the time
specifications are ignored.

All time specifications for the matlabcp functions appear as a
number and, optionally, a time unit:

• fs (femtoseconds)

• ps (picoseconds)

• ns (nanoseconds)

• us (microseconds)

• ms (milliseconds)

• sec (seconds)

• no units (tick)

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the HDL simulator and MATLAB. When you provide TCP/IP
information for matlabcp, you can choose a TCP/IP port number or
TCP/IP port alias or service name for the <tcp_spec> parameter.
If you are setting up communication between computers, you
must also specify the name or Internet address of the remote host
that is running the MATLAB server (hdldaemon). See “Specifying
TCP/IP Values” for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports”.

If you run the HDL simulator and MATLAB on the same
computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket
<tcp_spec> on the command line.

4-38

matlabcp

Note The communication mode that you specify with the
matlabcp command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB.

For more information on modes of communication, see
“Communications for HDL Cosimulation”. For more information
on establishing the MATLAB end of the communication link, see
“Starting the HDL Simulator from MATLAB”.

-rising <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function on the rising edge (transition from '0' to '1') of any of
the specified signals. Specify -rising with the path names of
one or more signals defined as a logic type (STD_LOGIC, BIT, X01,
and so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.

• Verilog: Rising edge is the transition from 0 to x, z, or 1, and
from x or z to 1.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function whenever any of the specified signals experiences a
falling edge—changes from '1' to '0'. Specify -falling with

4-39

matlabcp

the path names of one or more signals defined as a logic type
(STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Falling edge is {1 or H} to {0 or L}.

• Verilog: Falling edge is the transition from 1 to x, z, or 0, and
from x or z to 0.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-sensitivity <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function whenever any of the specified signals changes state.
Specify -sensitivity with the path names of one or more signals.
Signals of any type can appear in the sensitivity list and can be
positioned at any level in the HDL model hierarchy.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-mfunc <name>
The name of the MATLAB function that is associated with the
HDL module instance you specify for instance. By default, the
EDA Simulator Link software invokes a MATLAB function that
has the same name as the specified HDL instance. Thus, if the
names are the same, you can omit the -mfunc option. If the names
are not the same, use this argument when you call matlabcp. If

4-40

matlabcp

you omit this argument and matlabcp does not find a MATLAB
function with the same name, the command generates an error
message.

-use_instance_obj
Instructs the function specified with the argument -mfunc to
use an HDL instance object passed by EDA Simulator Link to
the function. You include the -use_instance_obj argument with
matlabcp in the following format:

matlabcp modelname -mfunc funcname -use_instance_obj

When you call matlabcp with the use_instance_obj argument, the
function has the following signature:

function MyFunctionName(hdl_instance_obj)

The HDL instance object (hdl_instance_obj) has the fields shown
in the following table.

Field Read/Write
Access

Description

tnext Write only Used to schedule a callback during the set time value.
This field is equivalent to old tnext. For example:

hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds from
tnow.

userdata Read/Write Stores state variables of the current matlabcp instance.
You can retrieve the variables the next time the callback
of this instance is scheduled.

4-41

matlabcp

Field Read/Write
Access

Description

simstatus Read only Stores the status of the HDL simulator. The EDA
Simulator Link software sets this field to ’Init’ during the
first callback for this particular instance and to ’Running’
thereafter. simstatus is a read-only property.

>> hdl_instance_obj.simstatus

ans=
Init

instance Read only Stores the full path of the Verilog/VHDL instance
associated with the callback. instance is a read-only
property. The value of this field equals that of the module
instance specified with the function call. For example:

In the HDL simulator:

hdlsim> matlabcp osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=
osc_top

4-42

matlabcp

Field Read/Write
Access

Description

argument Read only Stores the argument set by the -argument option of
matlabcp. For example:

matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only
when it is used with -use_instance_obj, otherwise the
argument is ignored. argument is a read-only property.

>> hdl_instance_obj.argument

ans=
foo

portinfo Read only Stores information about the VHDL and Verilog ports
associated with this instance. portinfo is a read-only
property, which has a field structure that describes the
ports defined for the associated HDL module. For each
port, the portinfo structure passes information such as
the port’s type, direction, and size. For more information
on port data, see “Gaining Access to and Applying Port
Information”.

hdl_instance_obj.portinfo.field1.field2.field3

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through
portinfo.

4-43

matlabcp

Field Read/Write
Access

Description

tscale Read only Stores the resolution limit (tick) in seconds of the HDL
simulator. tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=
1.0000e-009

Note When you use use_instance_obj, you access tscale
through the HDL instance object. If you do not use
use_instance_obj, you can still access tscale through
portinfo.

tnow Read only Stores the current time. tnow is a read-only property.

hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for the
output and input ports for a matlabcp instance. For
example:

>> hdl_instance_obj.portvalues

ans =
Read Only Input ports:
clk_enable: []
clk: []
reset: []

Read/Write Output ports:
sine_out: [22x1 char]

4-44

matlabcp

Field Read/Write
Access

Description

linkmode Read only Stores the status of the callback. The EDA Simulator Link
software sets this field to ’testbench’ if the callback is
associated with matlabtb and ’component’ if the callback
is associated with matlabcp. linkmode is a read-only
property.

>> hdl_instance_obj.linkmode

ans=
component

-argument
Used to pass user-defined arguments from the matlabcp
invocation on the HDL side to the MATLAB function callbacks.
Supported with -use_instance_obj only. See the field listing
under the -use_instance_obj property.

Examples The following examples demonstrate some ways you might use the
matlabcp function.

Using matlabcp with the -mfunc option to Associate an HDL
Component with a MATLAB Function of a Different Name

This example explicitly associates the Verilog module
vlogtestbench_top.u_matlab_component with the MATLAB function
vlogmatlabc using the -mfunc option. The '-socket' option specifies
using socket communication on port 4449.

matlabcp vlogtestbench_top.u_matlab_component -mfunc vlogmatlabc -socket 4449

Using matlabcp with Explicit Times and the -cancel Option

This example implicitly associates the Verilog module, vtestbench_top,
with the MATLAB function vlogtestbench_top, and includes explicit
times with the -cancel option.

matlabcp vlogtestbench_top 1e6 fs 3 2e3 ps -repeat 3 ns -cancel 7ns

4-45

matlabcp

Using matlabcp with Rising and Falling Edges

This example implicitly associates the Verilog module,
vlogtestbench_top, with the MATLAB function vlogtestbench_top, and
also uses rising and falling edges.

hldsim> matlabcp vlogtestbench_top 1 2 3 4 5 6 7 -rising outclk3

-falling u_matlab_component/inoutclk

Using matlabcp and the HDL Instance Object

In this example, the HDL simulator makes repeated calls to matlabcp
to bind multiple HDL instances to the same MATLAB function. Each
call contains -argument as a constructor parameter to differentiate
behavior.

> matlabcp u1_filter1x -mfunc osc_filter -use_instance_obj -argument oversample=1

> matlabcp u1_filter8x -mfunc osc_filter -use_instance_obj -argument oversample=8

> matlabcp u2_filter8x -mfunc osc_filter -use_instance_obj -argument oversample=8

The MATLAB function callback, osc_filter.m, sets up user
instance-based state using obj.userdata, queries port and simulation
context using other obj fields, and uses the passed in obj.argument to
differentiate behavior.

function osc_filter(obj)

if (strcmp(obj.simstatus,'Init'))

ud = struct('Nbits', 22, 'Norder', 31, 'clockperiod', 80e-9, 'phase', 1));

eval(obj.argument);

if (~exist('oversample','var'))

error('HdlLinkDemo:UseInstanceObj:BadCtorArg', ...

'Bad constructor arg to osc_filter callback. Expecting

''oversample=value''.');

end

ud.oversample = oversample;

ud.oversampleperiod = ud.clockperiod/ud.oversample;

ud.InDelayLine = zeros(1,ud.Norder+1);

4-46

matlabcp

centerfreq = 70/256;

passband = [centerfreq-0.01, centerfreq+0.01];

b = fir1((ud.Norder+1)*ud.oversample-1, passband./ud.oversample);

ud.Hresp = ud.oversample .* b;

obj.userdata = ud;

end

...

4-47

matlabtb

Purpose Schedule MATLAB test bench session for instantiated HDL module

Syntax matlabtb <instance>
[<time-specs>]
[-socket <tcp-spec>]
[-rising <port>[,<port>...]]
[-falling <port> [,<port>,...]]
[-sensitivity <port>[,<port>,...]]
[-mfunc <name>]
[-use_instance_obj]
[-argument]

Description The matlabtb command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Creates a process that schedules invocations of the specified
MATLAB function.

• Cancels any pending events scheduled by a previous matlabtb
command that specified the same instance. For example, if you issue
the command matlabtb for instance foo, all previously scheduled
events initiated by matlabtb on foo are canceled.

This command is issued in the HDL simulator.

MATLAB test bench functions mimic stimuli passed to entities in the
HDL model. You force stimulus from MATLAB or HDL scheduled
with matlabtb.

4-48

matlabtb

Notes The communication mode that you specify for matlabtb must
match the communication mode you specified for hdldaemon when you
established the server connection.

For socket communications, specify the port number you selected for
hdldaemon when you issue a link request with the matlabtb command
in the HDL simulator.

Arguments <instance>
Specifies the instance of an HDL module that the EDA Simulator
Link software associates with a MATLAB test bench function.
By default, matlabtb associates the instance with a MATLAB
function that has the same name as the instance. For example,
if the instance is myfirfilter, matlabtb associates the instance
with the MATLAB function myfirfilter (note that hierarchy
names are ignored; for example, if your instance name is
top.myfirfilter, matlabtb would associate only myfirfilter
with the MATLAB function). Alternatively, you can specify a
different MATLAB function with -mfunc.

Note Do not specify an instance of an HDL module that has
already been associated with a MATLAB function (via matlabcp
or matlabtb). If you do, the new association overwrites the
existing one.

<time-specs>
Specifies a combination of time specifications consisting of any or
all of the following:

4-49

matlabtb

<timen>,... Specifies one or more discrete time values at which the
HDL simulator calls the specified MATLAB function. Each
time value is relative to the current simulation time. Even
if you do not specify a time, the HDL simulator calls the
MATLAB function once at the start of the simulation.
Separate multiple time values by a space.For example:

matlabtb vlogtestbench_top 10 ns, 10 ms, 10 sec

The MATLAB function executes when time equals 0 and
then 10 nanoseconds, 10 milliseconds, and 10 seconds from
time zero.

Note For time-based parameters, you can specify any
standard time units (ns, us, and so on). If you do not specify
units, the command treats the time value as a value of
HDL simulation ticks.

-repeat <time> Specifies that the HDL simulator calls the MATLAB
function repeatedly based on the specified <timen>,...
pattern. The time values are relative to the value of tnow
at the time the HDL simulator first calls the MATLAB
function.For example:

matlabtb vlogtestbench_top 5 ns -repeat 10 ns

The MATLAB function executes at time equals 0 ns, 5 ns,
15 ns, 25 ns, and so on.

-cancel <time> Specifies a time at which the specified MATLAB function
stops executing. The time value is relative to the value of
tnow at the time the HDL simulator first calls the MATLAB
function. If you do not specify a cancel time, the application
calls the MATLAB function until you finish the simulation,
quit the session, or issue a nomatlabtb call.

4-50

matlabtb

Note The -cancel option works only with the <time-specs>
arguments. It does not affect any of the other scheduling
arguments for matlabtb.

Note Place time specifications after the matlabtb instance and
before any additional command arguments; otherwise the time
specifications are ignored.

All time specifications for the matlabtb functions appear as a
number and, optionally, a time unit:

• fs (femtoseconds)

• ps (picoseconds)

• ns (nanoseconds)

• us (microseconds)

• ms (milliseconds)

• sec (seconds)

• no units (tick)

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
the HDL simulator and MATLAB. When you provide TCP/IP
information for matlabtb, you can choose a TCP/IP port number or
TCP/IP port alias or service name for the <tcp_spec> parameter.
If you are setting up communication between computers, you
must also specify the name or Internet address of the remote host
that is running the MATLAB server (hdldaemon). See “Specifying
TCP/IP Values” for some valid tcp_spec examples.

4-51

matlabtb

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports”.

If you run the HDL simulator and MATLAB on the same
computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify-socket
<tcp_spec> on the command line.

Note The communication mode that you specify with the
matlabtb command must match what you specify for the
communication mode when you issue the hdldaemon command in
MATLAB. For more information on modes of communication, see
“Communications for HDL Cosimulation”. For more information
on establishing the MATLAB end of the communication link, see
“Starting the HDL Simulator from MATLAB”.

-rising <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function on the rising edge (transition from '0' to '1') of any of
the specified signals. Specify -rising with the path names of
one or more signals defined as a logic type (STD_LOGIC, BIT, X01,
and so on).

For determining signal transition in:

• VHDL: Rising edge is {0 or L} to {1 or H}.

• Verilog: Rising edge is the transition from 0 to x, z, or 1, and
from x or z to 1.

4-52

matlabtb

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-falling <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function whenever any of the specified signals experiences a
falling edge—changes from '1' to '0'. Specify -falling with
the path names of one or more signals defined as a logic type
(STD_LOGIC, BIT, X01, and so on).

For determining signal transition in:

• VHDL: Falling edge is {1 or H} to {0 or L}.

• Verilog: Falling edge is the transition from 1 to x, z, or 0, and
from x or z to 0.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-sensitivity <signal>[, <signal>...]
Indicates that the application calls the specified MATLAB
function whenever any of the specified signals changes state.
Specify -sensitivity with the path names of one or more signals.
Signals of any type can appear in the sensitivity list and can be
positioned at any level of the HDL design.

If you specify the option with no signals, the interface is sensitive
to value changes for all signals.

4-53

matlabtb

Note Use of this option for INOUT ports can result in double calls.

For example:

-sensitivity /randnumgen/dout

The MATLAB function executes if the value of dout changes.

Note When specifying signals with the -rising, -falling, and
-sensitivity options, specify them in full path name format. If
you do not specify a full path name, the command applies the
HDL simulator rules to resolve signal specifications.

-mfunc <name>
The name of the associated MATLAB function. If you omit this
argument, matlabtb associates the HDL module instance to a
MATLAB function that has the same name as the HDL instance.
If you omit this argument and matlabtb does not find a MATLAB
function with the same name, the command generates an error
message.

-use_instance_obj
Instructs the function specified with the argument -mfunc to use
an HDL instance object passed by EDA Simulator Link to the
function. The -use_instance_obj argument is called with matlabtb
in the following format:

matlabtb modelname -mfunc funcname -use_instance_obj

When you call matlabcp with the use_instance_obj argument, the
function has the following signature:

function MyFunctionName(hdl_instance_obj)

4-54

matlabtb

The HDL instance object (hdl_instance_obj) has the fields shown
in the following table.

Field Read/Write
Access

Description

tnext Write only Used to schedule a callback during the set time value.
This field is equivalent to old tnext. For example:

hdl_instance_obj.tnext = hdl_instance_obj.tnow + 5e-9

will schedule a callback at time equals 5 nanoseconds
from tnow.

userdata Read/Write Stores state variables of the current matlabtb
instance. You can retrieve the variables the next time
the callback of this instance is scheduled.

simstatus Read only Stores the status of the HDL simulator. The EDA
Simulator Link software sets this parameter to ’Init’
during the first callback for this particular instance
and to ’Running’ thereafter. simstatus is a read-only
property.

>> hdl_instance_obj.simstatus

ans=
Init

4-55

matlabtb

Field Read/Write
Access

Description

instance Read only Stores the full path of the Verilog/VHDL instance
associated with the callback. instance is a read-only
property. The value of this field equals that of the
module instance specified with the function call. For
example:

In the HDL simulator:

hdlsim> matlabtb osc_top -mfunc oscfilter use_instance_obj

In MATLAB:

>> hdl_instance_obj.instance

ans=
osc_top

argument Read only Stores the argument set by the -argument option of
matlabtb. For example:

matlabtb osc_top -mfunc oscfilter -use_instance_obj -argument foo

The link software supports the -argument option only
when it is used with -use_instance_obj, otherwise
the argument is ignored. argument is a read-only
property.

>> hdl_instance_obj.argument

ans=
foo

4-56

matlabtb

Field Read/Write
Access

Description

portinfo Read only Stores information about the VHDL and Verilog ports
associated with this instance. portinfo is a read-only
property, which has a field structure that describes
the ports defined for the associated HDL module. For
each port, the portinfo structure passes information
such as the port’s type, direction, and size. For more
information on port data, see “Gaining Access to and
Applying Port Information”.

hdl_instance_obj.portinfo.field1.field2.field3

Note When you use use_instance_obj, you access
tscale through the HDL instance object. If you do
not use use_instance_obj, you can still access tscale
through portinfo.

tscale Read only Stores the resolution limit (tick) in seconds of the
HDL simulator. tscale is a read-only property.

>> hdl_instance_obj.tscale

ans=
1.0000e-009

4-57

matlabtb

Field Read/Write
Access

Description

Note When you use use_instance_obj, you access
tscale through the HDL instance object. If you do
not use use_instance_obj, you can still access tscale
through portinfo.

tnow Read only Stores the current time. tnow is a read-only property.

hdl_instance_obj.tnext = hld_instance_obj.tnow + fastestrate;

portvalues Read/Write Stores the current values of and sets new values for
the output and input ports for a matlabtb instance.
For example:

>> hdl_instance_obj.portvalues

ans =
Read/Write Input ports:
clk_enable: []
clk: []
reset: []

Read Only Output ports:
sine_out: [22x1 char]

4-58

matlabtb

Field Read/Write
Access

Description

For example, you can set the reset port to 1 by calling
hdl_instance_obj.portvalues.reset = '1'.

linkmode Read only Stores the status of the callback. The EDA Simulator
Link software sets this parameter to ’testbench’ if the
callback is associated with matlabtb and ’component’
if the callback is associated with matlabcp. linkmode
is a read-only property.

>> hdl_instance_obj.linkmode

ans=
testbench

-argument
Used to pass user-defined arguments from the matlabtb
instantiation on the HDL side to the MATLAB function callbacks.
Supported with -use_instance_obj only. See the field listing for
argument under the -use_instance_obj property.

Examples The following examples demonstrate some ways you might use the
matlabtb function.

4-59

matlabtb

Using matlabtb with the -socket Argument and Time
Parameters

The following command starts the HDL simulator client component of
EDA Simulator Link, associates an instance of the entity, myfirfilter,
with the MATLAB function myfirfilter, and begins a local TCP/IP
socket-based test bench session using TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 5 nanoseconds
from the current time, and then repeatedly every 10 nanoseconds:

hdlsim> matlabtb myfirfilter 5 ns -repeat 10 ns -socket 4449

Applying Rising Edge Clocks and State Changes with
matlabtb

The following command starts the HDL simulator client component of
EDA Simulator Link, and begins a remote TCP/IP socket-based session
using remote MATLAB host compb and TCP/IP port 4449. Based on the
specified test bench stimuli, myfirfilter.m executes 10 nanoseconds
from the current time, each time the signal /top/fclk experiences a
rising edge, and each time the signal /top/din changes state.

hdlsim> matlabtb /top/myfirfilter 10 ns -rising /top/fclk -sensitivity /top/din

-socket 4449@computer123

Specifying a MATLAB Function Name and Sensitizing Signals
with matlabtb

The following command starts the HDL simulator client component of
the EDA Simulator Link software. The '-mfunc' option specifies the
MATLAB function to connect to and the '-socket' option specifies the
port number for socket connection mode. '-sensitivity' indicates
that the test bench session is sensitized to the signal sine_out.

hdlsim> matlabtb osc_top -sensitivity /osc_top/sine_out
-socket 4448 -mfunc hosctb

4-60

matlabtbeval

Purpose Call specified MATLAB function once and immediately on behalf of
instantiated HDL module

Syntax matlabtbeval <instance> [-socket <tcp_spec>]
[-mfunc <name>]

Description The matlabtbeval command has the following characteristics:

• Starts the HDL simulator client component of the EDA Simulator
Link software.

• Associates a specified instance of an HDL design created in the HDL
simulator with a MATLAB function.

• Executes the specified MATLAB function once and immediately on
behalf of the specified module instance.

This command is issued in the HDL simulator.

Note The matlabtbeval command executes the MATLAB function
immediately, while matlabtb provides several options for scheduling
MATLAB function execution.

Notes The communication mode that you specify for matlabtbeval
must match the communication mode you specified for hdldaemon when
you established the server connection.

For socket communications, specify the port number you selected for
hdldaemon when you issue a link request with the matlabtbeval
command in the HDL simulator.

Arguments <instance>
Specifies the instance of an HDL module that is associated with
a MATLAB function. By default, matlabtbeval associates the

4-61

matlabtbeval

HDL module instance with a MATLAB function that has the
same name as the HDL module instance. For example, if the HDL
module instance is myfirfilter, matlabtbeval associates the
HDL module instance with the MATLAB function myfirfilter.
Alternatively, you can specify a different MATLAB function with
the -mfunc property.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between the
HDL simulator and MATLAB. For TCP/IP socket communication
on a single computer, the <tcp_spec> can consist of just a
TCP/IP port number or service name (alias). If you are setting up
communication between computers, you must also specify the
name or Internet address of the remote host. See “Specifying
TCP/IP Values” for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports”.

If you run the HDL simulator and MATLAB on the same
computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket
<tcp-spec> on the command line.

Note The communication mode that you specify with the
matlabtbeval command must match what you specify for
the communication mode when you call the hdldaemon
command to start the MATLAB server. For more information
on communication modes, see “Communications for HDL
Cosimulation”. For more information on establishing the
MATLAB end of the communication link, see “Starting the HDL
Simulator from MATLAB”.

4-62

matlabtbeval

-mfunc <name>
The name of the associated MATLAB function. If you omit this
argument, matlabtbeval associates the HDL module instance
with a MATLAB function that has the same name as the HDL
module instance.. If you omit this argument and matlabtbeval
does not find a MATLAB function with the same name, the
command displays an error message.

Examples This example starts the HDL simulator client component of the
link software, associates an instance of the module myfirfilter with
the function myfirfilter.m, and uses a local TCP/IP socket-based
communication link to TCP/IP port 4449 to execute the function
myfirfilter.m:

> matlabtbeval myfirfilter -socket 4449:

4-63

mvl2dec

Purpose Convert multivalued logic to decimal

Syntax mvl2dec('mv_logic_string')
mvl2dec('mv_logic_string', signed)

Description mvl2dec('mv_logic_string') converts a multivalued logic string to a
positive decimal. If mv_logic_string contains any character other than
'0' or '1', NaN is returned. mv_logic_string must be a vector.

mvl2dec('mv_logic_string', signed) converts a multivalued logic
string to a positive or a negative decimal. If signed is true, this function
assumes the first character mv_logic_string(1) to be a signed bit of a 2s
complement number. If signed is missing or false, the multivalued logic
string becomes a positive decimal.

Examples The following function call returns the decimal value 23:

mvl2dec('010111')

The following function call returns NaN:

mvl2dec('xxxxxx')

The following function call returns the decimal value -9:

mvl2dec('10111',true)

See Also dec2mvl

4-64

nclaunch

Purpose Start and configure Cadence Incisive simulators for use with EDA
Simulator Link software

Syntax nclaunch('PropertyName', 'PropertyValue'...)

Description nclaunch('PropertyName', 'PropertyValue'...) starts the
Cadence Incisive simulator for use with the MATLAB and Simulink
features of the EDA Simulator Link software. The first folder in the
Cadence Incisive simulator matches your MATLAB current folder if you
do not specify an explicit rundir parameter.

After you call this function, you can use EDA Simulator Link functions
for the HDL simulator (for example, hdlsimmatlab, hdlsimulink) to
do interactive debug setup.

The property name/property value pair settings allow you to customize
the Tcl commands used to start the Cadence Incisive simulator, the
ncsim executable to be used, the path and name of the Tcl script that
stores the start commands, and for Simulink applications, details about
the mode of communication to be used by the applications. You must
use a property name/property value pair with nclaunch.

Property
Name/
Property
Value
Pairs

'hdlsimdir', 'pathname'
Specifies the path name to the Cadence Incisive simulator
executable to be started. By default, the function uses the first
version of the simulator that it finds on the system path (defined
by the path variable) . Use this option to start different versions
of the Cadence Incisive simulator or if the version of the simulator
you want to run does not reside on the system path.

'hdlsimexe', 'simexename'
Specifies the name of a Cadence Incisive simulator executable.
By default, this function uses 'ncsim'. You can specify a
custom-built simulator executable with 'simexename.'

'libdir', 'folder'
Specifies the folder containing MATLAB shared libraries. This
property creates an entry in the startup Tcl file that points to the

4-65

nclaunch

folder with the shared libraries needed for the Cadence Incisive
simulator to communicate with MATLAB when the Cadence
Incisive simulator runs on a machine that does not have MATLAB.

'libfile', 'library_file_name'
Specifies a particular library file. This value defaults to the
version of the library file that was built using the same compiler
that MATLAB itself uses. If the HDL simulator links other
libraries, including SystemC libraries, that were built using a
compiler supplied with the HDL simulator, you can specify an
alternate library file with this property. See “Using the EDA
Simulator Link Libraries for HDL Cosimulation” for versions of
the library built using other compilers.

'rundir', 'dirname'
Specifies where to run the HDL simulator. By default, the
function uses the current working folder.

The following conditions apply to this name/value pair:

• If the value of dirname is “TEMPDIR”, the function creates a
temporary folder in which it runs the HDL simulator.

• If you specifydirnameand the folder does not exist, you will
get an error.

'runmode', 'mode'
Specifies how to start the HDL simulator. This property accepts
the following valid values:

• 'Batch': Start the HDL simulator in the background with no
window.

• 'Batch with Xterm': Run HDL simulator in an
non-interactive Xterm window.

• 'CLI': Start the HDL simulator in an interactive terminal
window.

• 'GUI': Start the HDL simulator with the SimVision graphical
user interface.

4-66

nclaunch

This value defaults to 'GUI'.

'socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between the
Cadence Incisive simulator and Simulink. See “Specifying TCP/IP
Values” for valid TCP/IP examples. For more information on
choosing TCP/IP socket ports, see “Choosing TCP/IP Socket Ports”.

If the Cadence Incisive simulator and Simulink run on the same
computing system, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket
<tcp-spec> on the command line.

'starthdlsim', ['yes' | 'no']
Determines whether the Cadence Incisive simulator is launched.
This parameter defaults to yes, which launches the Cadence
Incisive simulator and creates a startup Tcl file. If you
setstarthdlsim to no, the function does not launch the Cadence
Incisive simulator , but it still creates a startup Tcl file.

This startup Tcl file contains pointers to MATLAB and Simulink
shared libraries. To run the Cadence Incisive simulator manually,
see “Starting the HDL Simulator from MATLAB”.

'startupfile', 'pathname'
Each invocation of nclaunch creates a Tcl script that, when
executed, compiles and launches the HDL simulator. By default,
this function generates a filename of compile_and_launch.tcl
in the folder specified by rundir. With this property, you can
specify the name and location of the generated Tcl script. If the
file name already exists, that file’s contents are overwritten. You
can edit and use the generated file in a regular shell outside of
MATLAB. For example:

sh> tclsh compile_and_launch.tcl

4-67

nclaunch

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute before the Cadence
Incisive simulator launches. Specify a command string or a
cell array of command strings. You must specify at least one
command; otherwise, no action occurs.

Note You must type exec in front of non-Tcl system shell
commands. For example:

exec -ncverilog -c +access+rw +linedebug top.v
hdlsimulink -gui work.top

Examples The following function call sequence compiles the design and starts
Simulink with a GUI from the "proj" folder with the model loaded.
Simulink is instructed to communicate with the EDA Simulator Link
interface on socket port 4449. All of these commands are specified in a
single string as the property value to tclstart.

nclaunch(...
'tclstart',...
{'exec ncverilog -c +access+rw +linedebug top.v',...
'hdlsimulink -gui work.top'},...
'socketsimulink','4449',...
'rundir', '/proj');

In this next example, tclcmd is used to build the sequence of Tcl
commands that are executed in a Tcl shell after calling nclaunch from
MATLAB, as follows:

• tclcmd{1} compiles vlogtestbench_top.

• tclcmd{2} elaborates the model.

• tclcmd{3} calls hdlsimmatlab in gui mode and loads the elaborated
vlogtestbench_top in the simulator.

4-68

nclaunch

The function executes the arguments being passed with -input
(matlabtb and run) in the ncsim Tcl shell. In this example,
matlabcp associates the function vlogmatlabc to the module instance
u_matlab_component. It assumes that the hdldaemon in MATLAB is
listening on port 32864. The run function will run 50 resolution units
(ticks).

tclcmd{1} = 'exec ncvlog vlogtestbench_top.v'

tclcmd{2} = 'exec ncelab -access +wc vlogtestbench_top'

tclcmd{3} = ['hdlsimmatlab -gui vlogtestbench_top ' ...

'-input "{@matlabcp vlogtestbench_top.u_matlab_component...

-mfunc vlogmatlabc -socket 32864}" '...

'-input "{@run 50}"']

nclaunch('hdlsimdir', 'local.IUS.glnx.tools.bin', 'tclstart',tclcmd);

The following example shows using the property startupfile to
designate a Tcl script that the function then uses to start the HDL
simulator from the Tcl shell.

In MATLAB:

nclaunch (`tclstart', `xxx', `startupfile', `mytclscript',...

`starthdlsim', `no')

In Tcl shell:

shell> tclsh mytclscript

4-69

nomatlabtb

Purpose End active MATLAB test bench and MATLAB component sessions

Syntax nomatlabtb

Description The nomatlabtb command ends all active MATLAB test bench and
MATLAB component sessions that were previously initiated by
matlabtb or matlabcp commands.

This command is issued in the HDL simulator.

Note This command should be called before shutting down hdldaemon
or hdldaemon will block shutdown until the call occurs.

Examples The following command ends all MATLAB test bench and MATLAB
component sessions:

> nomatlabtb

See Also matlabtb,matlabcp

4-70

notifyMatlabServer

Purpose Send HDL simulator event and process IDs to MATLAB server

Syntax notifyMatlabServer EventID -socket tcp-spec

Description notifyMatlabServer EventID -socket tcp-spec sends the HDL
simulator event ID and process identification (PID) to the MATLAB
server (hdldaemon) using the specified connection methods (socket or
shared memory). For MATLAB to receive this message, hdldaemon
must be running with the same communication mode as specified with
the notifyMatlabServer command. The event ID and the PID queue
in hdldaemon. notifyMatlabServer is often used in conjunction with
waitForHdlClient to make sure the HDL simulator is ready to begin or
continue processing.

This command issues in the HDL simulator.

Inputs EventID

Specifies the event ID to be sent to hdldaemon. The ID requires
a positive number less than the maximum value of 32-bit signed
integer. This parameter contains the event ID expected by the
command waitForHdlClient in MATLAB.

Default: 1

socket tcp_spec

Specifies that TCP/IP socket communication be used for the
link between the HDL simulator and MATLAB. For TCP/IP
socket communication on a single computer, tcp_spec requires
either a TCP/IP port number or service name (alias). To set up
communication between computers, you must also specify the
name or Internet address of the remote host that is running the
MATLAB server (hdldaemon).

When you omit the socket option, MATLAB and the HDL
simulator use shared memory communication.

4-71

notifyMatlabServer

Examples In MATLAB, use the function waitForHdlClient to verify whether the
HDL simulator event ID has been received. In the following example,
the function returns the HDL Simulator PID if EventID = 5 is received
within 100 seconds. If a time-out occurs, the function returns –1.

>> hdldaemon('socket',5002);
...
>> hdlpid = waitForHdlClient(100,5);

In the HDL simulator, issue the notifyMatlabServer command to
send event ID 5 to hdldaemon running on the same machine using
TCP/IP socket port 5002.

>> notifyMatlabServer 5 -socket 5002

See Also waitForHdlClient

4-72

pingHdlSim

Purpose Block cosimulation until HDL simulator is ready for simulation

Syntax pingHdlSim(timeout)
pingHdlSim(timeout, 'portnumber')
pingHdlSim(timeout, 'portnumber', 'hostname')

Description pingHdlSim(timeout) blocks cosimulation by not returning until the
HDL server loads or until the specified time-out occurs. pingHdlSim
returns the process ID of the HDL simulator or -1 if a time-out occurs.
You must enter a time-out value. You may find this function useful if
you are trying to automate a cosimulation and need to know that the
HDL server has loaded before your script continues the simulation.

pingHdlSim(timeout, 'portnumber') tries to connect to the local host
on port portnumber and times out after timeout seconds you specify.

pingHdlSim(timeout, 'portnumber', 'hostname') tries to connect
to the host hostname on port portname. It times out after timeout
seconds you specify.

Examples The following function call blocks further cosimulation until the HDL
server loads or until 30 seconds have passed:

pingHdlSim(30)

If the server loads within 30 seconds, pingHdlSim returns the process
ID. If it does not, pingHdlSim returns -1.

The following function call blocks further cosimulation on port 5678
until the HDL server loads or until 20 seconds have passed:

pingHdlSim(20, '5678')

The following function call blocks further cosimulation on port 5678 on
host name msuser until the HDL server loads or until 20 seconds pass:

pingHdlSim(20, '5678', 'msuser')

4-73

setupxilinxtools

Purpose Configure MATLAB environment for use with Xilinx FPGA workflow

Syntax setupxilinxtools

Description setupxilinxtools performs the following tasks to ensure your
environment is set up correctly to use the Xilinx FPGA workflow:

• Checks that the XILINX system environment variable is defined and
points to a valid Xilinx ISE installation.

• Checks if your platform and Xilinx ISE version is supported for the
FPGA workflow.

• Adds any paths to your MATLAB search path necessary for using
the Xilinx FPGA workflow.

Examples Enter the following command at the MATLAB command prompt:

>setupxilinxtools

See Also fpgamodelsetup | makefpgaproject

4-74

tclHdlSim

Purpose Execute Tcl command in Incisive or ModelSim simulator

Syntax tclHdlSim(tclCmd)
tclHdlSim(tclCmd,'portNumber')
tclHdlSim(tclCmd, 'portnumber', 'hostname')

Description tclHdlSim(tclCmd) executes a Tcl command on the Incisive or
ModelSim simulator using a shared connection during a Simulink
cosimulation session.

tclHdlSim(tclCmd,'portNumber') executes a Tcl command on the
Incisive or ModelSim simulator by connecting to the local host on port
portNumber.

tclHdlSim(tclCmd, 'portnumber', 'hostname') executes a Tcl
command on the Incisive or ModelSim simulator by connecting to the
host hostname on port portname.

The Incisive or ModelSim simulator must be connected to MATLAB and
Simulink using the EDA Simulator Link software for this function to
work (see either vsimulink or hdlsimulink).

To execute a Tcl command on the Incisive or ModelSim
simulator during a MATLAB cosimulation session, use
hdldaemon('tclcmd','command').

Examples The following function call displays a message in the HDL simulator
command window using port 5678 on host name msuser:

tclHdlSim('puts "Done"', '5678', 'msuser')

See Also hdldaemon, launchDiscovery, nclaunch, vsim

4-75

vsim

Purpose Start and configure ModelSim for use with EDA Simulator Link

Syntax vsim('PropertyName', 'PropertyValue'...)

Description vsim('PropertyName', 'PropertyValue'...) starts and configures
the ModelSim simulator (vsim) for use with the MATLAB and Simulink
features of EDA Simulator Link. The first folder in ModelSim matches
your MATLAB current folder.

After you call this function, you can use EDA Simulator Link functions
for the HDL simulator (for example, vsimmatlab, vsimulink) to perform
the following actions:

• Load instances of VHDL entities or Verilog modules for simulations
that use MATLAB for verification

• Load instances of VHDL entities or Verilog modules for simulations
that use Simulink for cosimulation

The property name/property value pair settings allow you to customize
the Tcl commands used to start ModelSim, the vsim executable to be
used, the path and name of the DO file that stores the start commands,
and for Simulink applications, details about the mode of communication
to be used by the applications.

Tip Use pingHdlSim to add a pause between the call to vsim and
the call to actually run the simulation when you are attempting to
automate the cosimulation.

Property
Name/Property
Value
Pairs

'libdir', 'folder'
Specifies the folder containing MATLAB library files. This
property creates an entry in the startup Tcl file that points to the
folder with the libraries needed for ModelSim to communicate
with MATLAB when ModelSim runs on a machine that does not
have MATLAB.

4-76

vsim

'libfile', 'library_file_name'
Specifies a particular library file. This value defaults to the
version of the library file that was built using the same compiler
that MATLAB itself uses. If the HDL simulator links other
libraries, including SystemC libraries, that were built using a
compiler supplied with the HDL simulator, you can specify an
alternate library file with this property. See “Using the EDA
Simulator Link Libraries for HDL Cosimulation” for versions of
the library built using other compilers.

'pingTimeout', 'seconds'
Time to wait, in seconds, for the HDL simulator to start. Specify 0
(the default) to immediately return without waiting.

'rundir', 'dirname'
Specifies where to run ModelSim. By default, the function uses
the current working folder.

The following conditions apply to this name/value pair:

• If the value of dirname is “TEMPDIR”, the function creates a
temporary folder in which it runs ModelSim.

• If you specify dirname and the folder does not exist, you will
get an error.

'runmode', 'mode'
Specifies how to start the HDL simulator. This property accepts
the following valid values:

• 'Batch': Start the HDL simulator in the background with
no window (Linux) or in a non-interactive command window
(Windows).

• 'CLI': Start the HDL simulator in an interactive terminal
window.

• 'GUI': Start the HDL simulator with the ModelSim graphical
user interface.

This value defaults to 'GUI'.

4-77

vsim

'socketsimulink', 'tcp_spec'
Specifies TCP/IP socket communication for links between
ModelSim and Simulink. For TCP/IP socket communication
on a single computing system, the tcp_spec can consist of just
a TCP/IP port number or service name. If you are setting up
communication between computing systems, you must also specify
the name or Internet address of the remote host. See “Specifying
TCP/IP Values” for some valid tcp_spec examples.

For more information on choosing TCP/IP socket ports, see
“Choosing TCP/IP Socket Ports”

If ModelSim and Simulink run on the same computing system,
you have the option of using shared memory for communication.
Shared memory is the default mode of communication and takes
effect if you do not specify -socket <tcp-spec> on the command
line.

Note The function applies the communication mode specified by
this property to all invocations of Simulink from ModelSim.

'startms', ['yes' | 'no']
Determines whether ModelSim will launch from vsim. This
property defaults to yes, which launches ModelSim and creates a
startup Tcl file. If startms is set to no, ModelSim does not launch,
but the HDL simulator still creates a startup Tcl file.

This startup Tcl file contains pointers to MATLAB libraries. To
run ModelSim on a machine without MATLAB, copy the startup
Tcl file and MATLAB library files to the remote machine and
start ModelSim manually. See “Using the EDA Simulator Link
Libraries for HDL Cosimulation”.

4-78

vsim

'startupfile', 'pathname'
Each invocation of vsim creates a Tcl script that, when executed,
compiles and launches the HDL simulator. By default, this
function generates the filename of compile_and_launch.tcl
in the folder specified by rundir.. With this property, you can
specify the name and location of the generated Tcl script. If the
file name already exists, that file’s contents are overwritten. You
can edit and use the generated file in a regular shell outside of
MATLAB. For example:

sh> vsim -gui -do compile_and_launch.tcl

'tclstart', 'tcl_commands'
Specifies one or more Tcl commands to execute after ModelSim
launches. Specify a command string or a cell array of command
strings.

'vsimdir', 'pathname'
Specifies the path name to the ModelSim simulator executable
(vsim.exe) to be started. By default, the function uses the first
version of vsim.exe that it finds on the system path (defined by
the path variable) . Use this option to start different versions of
the ModelSim simulator or if the version of the simulator you
want to run does not reside on the system path.

Examples The following function call sequence changes the folder location to
VHDLproj and then calls the function vsim. Because the call to vsim
omits the 'vsimdir' and 'startupfile' properties, vsim uses the
default vsim executable and creates a temporary DO file in a temporary
folder. The 'tclstart' property specifies a Tcl command that loads an
instance of a VHDL entity for MATLAB verification:

• The vsimmatlab command loads an instance of the VHDL entity
parse in the library work for MATLAB verification.

• The matlabtb command begins the test bench session for an instance
of entity parse, using TCP/IP socket communication on port 4449
and a test bench timing value of 10 ns.

4-79

vsim

cd VHDLproj % Change folder to ModelSim project folder

vsim('tclstart','vsimmatlab work.parse; matlabtb parse 10 ns -socket 4449')

The following function call sequence changes the folder location to
VHDLproj and then calls the function vsim.

• Because the call to vsim omits the 'vsimdir' and 'startupfile'
properties, vsim uses the default vsim executable and creates a DO
file in a temporary folder.

• The 'tclstart' property specifies a Tcl command that loads the
VHDL entity parse in the library work for cosimulation between
vsim and Simulink.

• The 'socketsimulink' property specifies that TCP/IP socket
communication on the same computer is to be used for links between
Simulink and ModelSim, using socket port 4449.

cd VHDLproj % Change folder to ModelSim project folder

vsim('tclstart','vsimulink work.parse','socketsimulink','4449')

4-80

vsimmatlab

Purpose Load instantiated HDL module for verification with ModelSim and
MATLAB

Syntax vsimmatlab <instance> [<vsim_args>]

Description The vsimmatlab command loads the specified instance of an HDL
module for verification and sets up ModelSim so it can establish a
communication link with MATLAB. ModelSim opens a simulation
workspace and displays a series of messages in the command window as
it loads the HDL module’s packages and architectures.

This command is generally issued in the HDL simulator. It also may be
run from the HDL simulator prompt or from a Tcl script shell (tclsh).

Arguments <instance>
Specifies the instance of an HDL module to load for verification.

<vsim_args>
Specifies one or more ModelSim vsim command arguments.
For details, see the description of vsim in the ModelSim
documentation.

Examples The following command loads the HDL module instance parse from
library work for verification and sets up ModelSim so it can establish a
communication link with MATLAB:

ModelSim> vsimmatlab work.parse

4-81

vsimulink

Purpose Load instantiated HDL module for cosimulation with ModelSim and
Simulink

Syntax vsimulink <instance>
[-socket <tcp_spec>] [<vsim_args>]

Description The vsimulink command loads the specified instance of an HDL
module for cosimulation and sets up ModelSim so it can establish a
communication link with Simulink. ModelSim opens a simulation
workspace and displays a series of messages in the command window as
it loads the HDL module’s packages and architectures.

This command is issued in the HDL simulator.

Argument <instance>
Specifies the instance of an HDL module to load for cosimulation.

-socket <tcp_spec>
Specifies TCP/IP socket communication for the link between
ModelSim and MATLAB. This setting overrides the setting
specified with the MATLAB vsim function. The <tcp_spec> can
consist of a TCP/IP socket port number or service name (alias).
For example, you might specify port number 4449 or the service
name matlabservice.

For more information on choosing TCP/IP socket ports, see
“Specifying TCP/IP Values”.

If you run the HDL simulator and MATLAB on the same
computer, you have the option of using shared memory
for communication. Shared memory is the default mode of
communication and takes effect if you do not specify -socket
<tcp-spec> on the command line.

4-82

vsimulink

Note The communication mode that you specify with the
vsimulink command must match what you specify for the
communication mode when you configure EDA Simulator Link
blocks in your Simulink model. For more information on modes
of communication, see “Communications for HDL Cosimulation”.
For more information on establishing the Simulink end of the
communication link, see “Configuring the Communication Link in
the HDL Cosimulation Block”

<vsim_args>
Specifies one or more ModelSim vsim command arguments.
For details, see the description of vsim in the ModelSim
documentation.

Examples The following command loads the HDL module instance parse from
library work for cosimulation and sets up ModelSim so it can establish a
communication link with Simulink:

ModelSim> vsimulink work.parse

4-83

waitForHdlClient

Purpose Wait until specified event ID is obtained or time-out occurs

Syntax waitForHdlClient(TimeOut,EventID)
waitForHdlClient(TimeOut)
waitForHdlClient
output = waitForHdlClient(TimeOut,EventID)

Description waitForHdlClient(TimeOut,EventID) waits for the expected HDL
simulator event ID to arrive at the MATLAB server (hdldaemon)
before processing continues. If the expected event ID arrives before
the number of seconds specified by the TimeOut parameter, the
value returned by the HDL simulator is the HDL simulator process
identification (PID). Otherwise, the returned value is –1.

waitForHdlClient(TimeOut) waits for EventID = 1 for TimeOut
seconds.

waitForHdlClient waits for EventID = 1 for 60 seconds.

output = waitForHdlClient(TimeOut,EventID) returns the process
identification (PID) in output. Although you are not required to provide
an output variable, MATLAB returns an error if a time-out occurs and
the output argument is not specified.

Inputs TimeOut

Number of seconds to wait for a response from the HDL simulator

EventID

The HDL simulator event ID. EventID must be a positive number
less than the maximum value of a 32-bit signed integer. The
value should match the event ID sent by the notifyMatlabServer
command in the HDL simulator.

EventID can be either a scalar or vector value. If EventID is a
vector, the function return a value only if all elements of the
vector have been collected or if a time-out occurs. The returned
output value is the same size as the event ID, and each element of

4-84

waitForHdlClient

the output variable is the detected PID of the HDL simulator that
sends the corresponding event ID element.

Outputs output

Output variable for holding returned value from call to
waitForHdlClient. Contains either the HDL simulator process
identification (PID) or –1 if an error occurs.

Examples Wait for event ID 2 for 120 seconds.

>> hdlpid = waitForHdlClient(120, 2);

See Also notifyMatlabServer

4-85

wrapverilog

Purpose Apply VHDL wrapper to Verilog module

Syntax wrapverilog [-nocompile] <verilog_module>

Description
Note wrapverilog will be removed in a future version. EDA Simulator
Link now supports Verilog models directly, without requiring a VHDL
wrapper.

The wrapverilog command applies a VHDL wrapper to the specified
Verilog module and then automatically compiles the resulting VHDL
file. You can then use your wrapped Verilog module with EDA
Simulator Link.

This command is issued in the HDL simulator.

Before executing the wrapverilog command on a Verilog file, you must
compile and load the Verilog module in ModelSim, as in the following
example.

vlib work
vmap work work
vlog myverilogmod.v
vsim myverilogmod
wrapverilog [-nocompile] myverilogmod

Arguments <verilog_module>
Specifies the Verilog module to which a VHDL wrapper is to be
applied. The module you specify must be in a valid ModelSim
design library when you issue the command.

-nocompile
Suppresses automatic compilation of the resulting VHDL file,
verilog_module_wrap.vhd.

4-86

wrapverilog

Examples The following command applies a VHDL wrapper to Verilog module
myverilogmod.v and writes the output to myverilogmod_wrap.vhd.
The -nocompile option suppresses automatic compilation.

ModelSim> wrapverilog -nocompile myverilogmod

4-87

wrapverilog

4-88

Index

IndexA
action property

description of 4-3
arguments

for hdlsimmatlab command 4-18
for hdlsimulink command 4-19
for matlabcp command 4-35
for matlabtb command 4-48
for matlabtbeval command 4-61
for pingHdlSim function 4-73
for tclHdlSim function 4-75
for vsimmatlab command 4-81
for vsimulink command 4-82

Auto fill
in Ports pane of HDL Cosimulation block 2-2

B
block input ports parameter

description of 2-2
block output ports parameter

description of 2-2
blocks

HDL Cosimulation
description of 2-2

To VCD File
description of 2-26

C
-cancel option 4-48
Clocks pane

description of 2-2
configuremodelsim function

description of 4-3
Connection pane

description of 2-2
Cosimulation timing

absolute mode 2-2
relative mode 2-2

D
dec2mvl function

description of 4-9
dialogs

for HDL Cosimulation block 2-2
for To VCD File block 2-26

direct feedthrough option
for eliminating block latency 2-2

E
examples

configuremodelsim function 4-3
dec2mvl function 4-9
hdlsimmatlab command 4-18
hdlsimulink command 4-19
launchDiscovery function 4-21
matlabcp command 4-35
matlabtb command 4-48
matlabtbeval command 4-61
mvl2dec function 4-64
nclaunch function 4-65
nomatlabtb command 4-70
pingHdlSim function 4-73
tclHdlSim function 4-75
vsim function 4-76
vsimmatlab command 4-81
vsimulink command 4-82

F
-falling option 4-48
falling-edge clocks

description of 2-2
files

VCD 2-29
FPGA implementation functions

reference for 3-4
functions 4-1

hdlsimmatlab

Index-1

Index

description of 4-18
hdlsimulink

description of 4-19
makefpgaproject 4-32
matlabcp

description of 4-35
matlabtb

description of 4-48
matlabtbeval

description of 4-61
nomatlabtb 4-70
notifyMatlabServer 4-71
setupxilinxtools 4-74
tdkfpgasetup 4-10
waitForHdlClient 4-84
See also MATLAB functions

functions for generating FPGA projects
makefpgaproject 4-32
setupxilinxtools 4-74
tdkfpgasetup 4-10

G
generating FPGA projects

from command line 4-32

H
HDL Cosimulation block

description of 2-2
HDL cosimulation functions

reference for 3-2
HDL cosimulation library

reference for 1-2
HDL simulator running on this computer

parameter
description of 2-2

hdlsimdir property
with launchDiscovery function 4-21
with nclaunch function 4-65

hdlsimmatlab command
description of 4-18

hdlsimulink command
description of 4-19

Host name parameter
description of 2-2

I
Incisive simulator commands

hdlsimmatlab
description of 4-18

INOUT ports
specifying 2-2

L
launchDiscovery function

description of 4-21

M
MATLAB functions 4-1

configuremodelsim
description of 4-3

dec2mvl
description of 4-9

launchDiscovery
description of 4-21

mvl2dec
description of 4-64

nclaunch
description of 4-65

pingHdlSim
description of 4-73

tclHdlSim
description of 4-75

vsim
description of 4-76

matlabcp command
description of 4-35

Index-2

Index

matlabtb command
description of 4-48

matlabtbeval command
description of 4-61

-mfunc option
with matlabcp command 4-35
with matlabtb command 4-48
with matlabtbeval command 4-61

ModelSim commands
vsimmatlab

description of 4-81
vsimulink

description of 4-82
mvl2dec function

description of 4-64

N
nclaunch function

description of 4-65
nomatlabtb command 4-70
Number of input ports parameter 2-26
Number of output ports parameter

description of 2-26

O
options

for hdlsimulink command 4-19
for matlabcp command 4-35
for matlabtb command 4-48
for matlabtbeval command 4-61
for vsimulink command 4-82
property

with configuremodelsim function 4-3
with launchDiscovery function 4-21
with nclaunch function 4-65
with vsim function 4-76

Output sample time parameter
description of 2-2

P
parameters

for HDL Cosimulation block 2-2
for To VCD File block 2-26

path specification
for ports/signals and modules in Simulink

with HDL Cosimulation block 2-2
pingHdlSim function

description of 4-73
port names

specifying paths in Simulink
with HDL Cosimulation block 2-2

Port number or service parameter
description of 2-2

Ports pane
Auto fill option 2-2
description of 2-2
Enable direct feedthrough option 2-2

Post-simulation command parameter
description of 2-2

properties
action 4-3
for configuremodelsim function 4-3
for launchDiscovery function 4-21
for nclaunch function 4-65
for vsim function 4-76
nclaunchdir

with nclaunch function 4-65
socketsimulink 4-21 4-65 4-76
startupfile 4-21 4-65 4-76
tclstart

with configuremodelsim function 4-3
with launchDiscovery function 4-21
with nclaunch function 4-65
with vsim function 4-76

vsimdir
with configuremodelsim function 4-3
with vsim function 4-76

property option
for configuremodelsim function 4-3

Index-3

Index

for launchDiscovery function 4-21
for nclaunch function 4-65
for vsim function 4-76

Prsimulation command parameter
description of 2-2

R
-repeat option 4-35
-rising option 4-35
rising-edge clocks

description of 2-2

S
sending messages to MATLAB

notifyMatlabServer function 4-71
-sensitivity option 4-35
setupxilinxtools

function for generating FPGA projects 4-74
Shared memory parameter

description of 2-2
signal names

specifying paths in Simulink
with HDL Cosimulation block 2-2

signals
read/write access required 2-2

-socket option
with hdlsimulink command 4-19
with matlabcp command 4-35
with matlabtb command 4-48
with matlabtbeval command 4-61
with vsimulink command 4-82

socketsimulink property
description of 4-21 4-65 4-76

startupfile property
description of 4-21 4-65 4-76

T
Tcl commands

added to startup script via
launchDiscovery 4-21

added to startup script via nclaunch 4-65
hdlsimmatlab 4-18
hdlsimulink 4-19
specified in Tcl pane of HDL Cosimulation

block 2-2
Tcl pane

description of 2-2
tclHdlSim function

description of 4-75
tclstart property

with configuremodelsim function 4-3
with launchDiscovery function 4-21
with nclaunch function 4-65
with vsim function 4-76

time scale, VCD file 2-29
Timescales pane

description of 2-2
To VCD File block

description of 2-26

V
VCD file name parameter

description of 2-26
VCD files

format of 2-29
Virtual Platform simulation functions

reference for 3-5
vsim function

description of 4-76
vsimdir property

with configuremodelsim function 4-3
with vsim function 4-76

vsimmatlab command
description of 4-81

vsimulink command
description of 4-82

Index-4

Index

W
waiting for the HDL simulator

waitForHdlClient function 4-84

Index-5

	toc
	Block Reference
	HDL Cosimulation
	FPGA Implementations
	Virtual Platform Simulation

	Blocks — Alphabetical List
	Tcl Scripts for ModelSim Users
	Tcl Scripts for Incisive Users

	Function Reference
	HDL Cosimulation
	FPGA Implementations
	Virtual Platform Simulation

	Functions — Alphabetical List
	Required Properties
	Common Optional Properties
	Advanced Optional Properties
	VG_GNU_PACKAGE Properties

	Index

	tables
	Generated VCD File Format

